You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A Karger 'Publishing Highlights 1890-2015' title This book provides insights into the structures and functions of 130 of the most important biomolecules and their interactions with other endogenous or exogenous molecules. These interactions are illustrated by 3-dimensional images of their atomic structures rather than by abstract formulas or acronyms. The author has compiled an extraordinary collection of molecules which he has visualized in pictures of stunning clarity and beauty by applying molecular modelling software to their atomic coordinate files (deposited in the Brookhaven Protein Data Bank, PDB). Together with short explanatory texts they provide the reader with a deepened understa...
The present volume deals with the application of the following techniques; computational chemistry, X-ray diffraction, and two-dimensional nuclear magnetic resonance. The book will discuss how these methods can be used to study steric aspects of biomolecular interactions.
Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches and insights. Organized into two parts—one experimental, the other theoretical—this volume explo...
This thesis both broadens and deepens our understanding of the Brownian world. It addresses new problems in diffusion theory that have recently attracted considerable attention, both from the side of nanotechnology and from the viewpoint of pure academic research. The author focusses on the difussion of interacting particles in restricted geometries and under externally controlled forces. These geometries serve, for example, to model ion transport through narrow channels in cell membranes or a Brownian particle diffusing in an optical trap, now a paradigm for both theory and experiment. The work is exceptional in obtaining explicit analytically formulated answers to such realistic, experimentally relevant questions. At the same time, with its detailed exposition of the problems and a complete set of references, it presents a clear and broadly accessible introduction to the domain. Many of the problem settings and the corresponding exact asymptotic laws are completely new in diffusion theory.
As computational hardware continues to develop at a rapid pace, quantitative computations are playing an increasingly essential role in the study of biomolecular systems. One of the most important challenges that the field faces is to develop the next generation of computational models that strike the proper balance of computational efficiency and
Ligand-macromolecule interactions are of fundamental importance in the control of biological processes. This book applies the principles of linkage thermodynamics to polyfunctional macromolecular systems under equilibrium conditions, and describes the binding, linkage, and feedback phenomena that lead to control of complex metabolic processes. The first chapter sets out the different processes (conformational changes, changes in state of aggregation, phase changes) involving biological macromolecules which are affected by chemical variables (such as ligands) or physical variables (such as temperature and pressure). The general effects of ligands on micromolecular conformations and interactions are illustrated with specific examples from the respiratory proteins, electron-transport proteins, and nucleic acid binding proteins. Subsequent chapters develop these themes, and describe in detail how the mathematics of regulation and control can be applied to macromolecules in biological system.
This book gives an accessible, detailed overview on techniques of single molecule biophysics (SMB), showing how they are applied to numerous biological problems associated with understanding the molecular mechanisms of DNA replication, transcription, and translation, as well as functioning of molecular machines. It covers major single molecule imaging and probing techniques, highlighting key strengths and limitations of each method using recent examples. The chapters begin with a discussion of single molecule fluorescence techniques followed by an overview of the atomic force microscope and its use for direct time-lapse visualization of dynamics of molecular complexes at the nanoscale, as well as applications in measurements of interactions between molecules and mechanical properties of isolated molecules and their complexes. The next chapters address magnetic tweezers and optical tweezers, including instrumentation, fundamentals of operation, and applications. A final chapter turns to nanopore transport and nanopore-based DNA sequencing technology that will play a major role in next-generation genomics and healthcare applications.
In this first comprehensive resource to cover the application of single molecule techniques to biological measurements, the pioneers in the field show how to both set up and interpret a single molecule experiment. Following an introduction to single molecule measurements and enzymology, the expert authors consider molecular motors and mechanical properties before moving on to the applications themselves. Detailed discussions of studies on protein enzymes, ribozymes and nucleic acids are also included.