You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields. Specific topics covered include: * cancer prognosis using survival forests * short-term health problems related to air pollution: analysis using semiparametric generalized additive models * semiparametric models in the studies of aging and longevity This book will be of use as a reference text for general statisticians, theoreticians, graduate students, reliability engineers, health researchers, and biostatisticians working in applied probability and statistics.
A thoroughly updated and revised look at system reliability theory Since the first edition of this popular text was published nearly a decade ago, new standards have changed the focus of reliability engineering and introduced new concepts and terminology not previously addressed in the engineering literature. Consequently, the Second Edition of System Reliability Theory: Models, Statistical Methods, and Applications has been thoroughly rewritten and updated to meet current standards. To maximize its value as a pedagogical tool, the Second Edition features: Additional chapters on reliability of maintained systems and reliability assessment of safety-critical systems Discussion of basic assess...
By a statistical experiment we mean the procedure of drawing a sample with the intention of making a decision. The sample values are to be regarded as the values of a random variable defined on some meas urable space, and the decisions made are to be functions of this random variable. Although the roots of this notion of statistical experiment extend back nearly two hundred years, the formal treatment, which involves a description of the possible decision procedures and a conscious attempt to control errors, is of much more recent origin. Building upon the work of R. A. Fisher, J. Neyman and E. S. Pearson formalized many deci sion problems associated with the testing of hypotheses. Later A. ...
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process f...
This volume contains extended versions of 28 carefully selected and reviewed papers presented at The Fourth International Conference on Mathematical Methods in Reliability in Santa Fe, New Mexico, June 21-25, 2004, the leading conference in reliability research. A broad overview of current research activities in reliability theory and its applications is provided with coverage on reliability modeling, network and system reliability, Bayesian methods, survival analysis, degradation and maintenance modeling, and software reliability. The contributors are all leading experts in the field and include the plenary session speakers, Tim Bedford, Thierry Duchesne, Henry Wynn, Vicki Bier, Edsel Pena, Michael Hamada, and Todd Graves.
This book addresses a modern topic in reliability: multi-state and continuous-state system reliability, which has been intensively developed in recent years. It offers an up-to-date overview of the latest developments in reliability theory for multi-state systems, engineering applications to a variety of technical problems, and case studies that will be of interest to reliability engineers and industrial managers. It also covers corresponding theoretical issues, as well as case studies illustrating the applications of the corresponding theoretical advances. The book is divided into two parts: Modern Mathematical Methods for Multi-state System Reliability Analysis (Part 1), and Applications and Case Studies (Part 2), which examines real-world multi-state systems. It will greatly benefit scientists and researchers working in reliability, as well as practitioners and managers with an interest in reliability and performability analysis. It can also be used as a textbook or as a supporting text for postgraduate courses in Industrial Engineering, Electrical Engineering, Mechanical Engineering, Applied Mathematics, and Operations Research.
There are a number of important questions associated with statistical experiments: when does one given experiment yield more information than another; how can we measure the difference in information; how fast does information accumulate by repeating the experiment? The means of answering such questions has emerged from the work of Wald, Blackwell, LeCam and others and is based on the ideas of risk and deficiency. The present work which is devoted to the various methods of comparing statistical experiments, is essentially self-contained, requiring only some background in measure theory and functional analysis. Chapters introducing statistical experiments and the necessary convex analysis begin the book and are followed by others on game theory, decision theory and vector lattices. The notion of deficiency, which measures the difference in information between two experiments, is then introduced. The relation between it and other concepts, such as sufficiency, randomisation, distance, ordering, equivalence, completeness and convergence are explored. This is a comprehensive treatment of the subject and will be an essential reference for mathematical statisticians.
The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.
The Lloyd’s Register of Yachts was first issued in 1878, and was issued annually until 1980, except during the years 1916-18 and 1940-46. Two supplements containing additions and corrections were also issued annually. The Register contains the names, details and characters of Yachts classed by the Society, together with the particulars of other Yachts which are considered to be of interest, illustrates plates of the Flags of Yacht and Sailing Clubs, together with a List of Club Officers, an illustrated List of the Distinguishing Flags of Yachtsmen, a List of the Names and Addresses of Yacht Owners, and much other information. For more information on the Lloyd’s Register of Yachts, please click here: https://hec.lrfoundation.org.uk/archive-library/lloyds-register-of-yachts-online