You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The world is transforming its energy system from one dominated by fossil fuel combustion to one with net-zero emissions of carbon dioxide (CO2), the primary anthropogenic greenhouse gas. This energy transition is critical to mitigating climate change, protecting human health, and revitalizing the U.S. economy. To help policymakers, businesses, communities, and the public better understand what a net-zero transition would mean for the United States, the National Academies of Sciences, Engineering and Medicine convened a committee of experts to investigate how the U.S. could best decarbonize its transportation, electricity, buildings, and industrial sectors. This report, Accelerating Decarbonization of the United States Energy System, identifies key technological and socio-economic goals that must be achieved to put the United States on the path to reach net-zero carbon emissions by 2050. The report presents a policy blueprint outlining critical near-term actions for the first decade (2021-2030) of this 30-year effort, including ways to support communities that will be most impacted by the transition.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
A widespread and rapid transition to a low-carbon energy system by 2050 is essential to keep pace with ambitious policy goals and avoid the worst consequences of climate change. Innovation is necessary to lower costs and improve performance of existing technologies and to develop new clean energy options that address challenges in harder-to-decarbonize sectors. To examine means by which the U.S. federal government can rise to this challenge, the National Academies of Sciences, Engineering, and Medicine hosted a virtual workshop series "Enhancing Federal Clean Energy Innovation" on July 27 to August 7, 2020. The workshop featured timely, action-orientated assessments of how to strengthen development and penetration of new clean energy technologies. This publication summarizes the presentations and discussions that occurred over the course of the workshop.
Climate assessment activities are increasingly driven by subnational organizationsâ€"city, county, and state governments; utilities and private companies; and stakeholder groups and engaged publicsâ€"trying to better serve their constituents, customers, and members by understanding and preparing for how climate change will impact them locally. Whether the threats are drought and wildfires, storm surge and sea level rise, or heat waves and urban heat islands, the warming climate is affecting people and communities across the country. To explore the growing role of subnational climate assessments and action, the National Academies of Sciences, Engineering, and Medicine hosted the 2-day workshop on August 14-15, 2018. This publication summarizes the presentations and discussions from the workshop.
Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are ...
A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system. A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.
Electric power is essential for the lives and livelihoods of all Americans, and the need for electricity that is safe, clean, affordable, and reliable will only grow in the decades to come. At the request of Congress and the Department of Energy, the National Academies convened a committee of experts to undertake a comprehensive evaluation of the U.S. grid and how it how it might evolve in response to advances in new energy technologies, changes in demand, and future innovation. The Future of Electric Power in the United States presents an extensive set of policy and funding recommendations aimed at modernizing the U.S. electric system. The report addresses technology development, operations, grid architectures, and business practices, as well as ways to make the electricity system safe, secure, sustainable, equitable, and resilient.
While progress has been made in the development of decarbonization technologies, much work remains in scale-up and deployment. For decarbonization technologies to reach meaningful scale, real-world constraints, societal, economic, and political, must be considered. To identify the primary challenges and opportunities to deploying decarbonization technologies at scale across major sectors of the U.S. economy, the Board on Energy and Environmental Systems of the National Academies of Sciences, Engineering, and Medicine convened a workshop on July 22-23, 2019. In addition to technology-specific and sector-specific studies, the workshop considered the types of societal transformations required, as well as potential policy drivers for carbon dioxide emissions reductions. This publication summarizes the presentations and discussion of the workshop.
The Energy Policy Act of 1992 called on the National Academy of Sciences to conduct a study and provide recommendations for reducing the costs of decontaminating and decommissioning (D&D) the nation's uranium enrichment facilities located at Oak Ridge, Tennessee; Raducah, Kentucky; and Portsmouth, Ohio. This volume examines the existing plans and cost estimates for the D&D of these facilities, including such elements as technologies, planning and management, and identifies approaches that could reduce D&D costs. It also assesses options for disposition of the large quantities of depleted uranium hexafluoride that are stored at these sites.
"While the energy sector is a primary target of efforts to arrest and reverse the growth of greenhouse gas emissions and lower the carbon footprint of development, it is also expected to be increasingly affected by unavoidable climate consequences from the damage already induced in the biosphere. Energy services and resources, as well as seasonal demand, will be increasingly affected by changing trends, increasing variability, greater extremes and large inter-annual variations in climate parameters in some regions. All evidence suggests that adaptation is not an optional add-on but an essential reckoning on par with other business risks. Existing energy infrastructure, new infrastructure and...