You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the first volume is on the mathematical analysis of attractors and inertial manifolds. This volume deals with the existence of global attractors, inertial manifolds and with the estimation of Hausdorff fractal dimension for some dissipative nonlinear evolution equations in modern physics. Known as well as many new results about the existence, regularity and properties of inertial manifolds and approximate inertial manifolds are also presented in the first volume. The second volume will be devoted to modern analytical tools and methods in infinite-dimensional dynamical systems. Contents Attractor and its dimension estimation Inertial manifold The approximate inertial manifold
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope.This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau-Lifshitz equations and fractional Ginzburg-Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs.
In the past few years there has been a fruitful exchange of expertise on the subject of partial differential equations (PDEs) between mathematicians from the People's Republic of China and the rest of the world. The goal of this collection of papers is to summarize and introduce the historical progress of the development of PDEs in China from the 1950s to the 1980s. The results presented here were mainly published before the 1980s, but, having been printed in the Chinese language, have not reached the wider audience they deserve. Topics covered include, among others, nonlinear hyperbolic equations, nonlinear elliptic equations, nonlinear parabolic equations, mixed equations, free boundary problems, minimal surfaces in Riemannian manifolds, microlocal analysis and solitons. For mathematicians and physicists interested in the historical development of PDEs in the People's Republic of China.
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
Contents: Direct and Inverse Diffraction by Periodic Structures (G Bao)Weak Flow of H-Systems (Y-M Chen)Strongly Compact Attractor for Dissipative Zakharov Equations (B-L Guo et al.)C∞-Solutions of Generalized Porous Medium Equations (M Ôtani & Y Sugiyama)Cauchy Problem for Generalized IMBq Equation (G-W Chen & S-B Wang)Inertial Manifolds for a Nonlocal Kuramoto–Sivashinsky Equation (J-Q Duan et al.)Weak Solutions of the Generalized Magnetic Flow Equations (S-H He & Z-D Dai)The Solution of Hammerstein Integral Equation Without Coercive Conditions (Y-L Shu)Global Behaviour of the Solution of Nonlinear Forest Evolution Equation (D-J Wang)Uniqueness of Generalized Solutions for Semiconduct...
The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science. Contents: Preface Sobolev Space and Preliminaries The Vanishing Viscosity Method of Some Nonlinear Evolution System The Vanishing Viscosity Method of Quasilinear Hyperbolic System Physical Viscosity and Viscosity of Difference Scheme Convergence of Lax–Friedrichs Scheme, Godunov Scheme and Glimm Scheme Electric–Magnetohydrodynamic Equations References
Quantum hydrodynamics comes from superfluid, superconductivity, semiconductor and so on. Quantum hydrodynamic model describes Helium II superfluid, Bose-Einstein condensation in inert gas, dissipative perturbation of Hamilton-Jacobi system, amplitude and dissipative perturbation of Eikonal quantum wave and so on. Owing to the broad application of quantum hydrodynamic equations, the study of the quantum hydrodynamic equations has aroused the concern of more and more scholars. Based on the above facts, we collected and collated the data of quantum hydrodynamic equations, and studied the concerning mathematical problems.The main contents of this book are: the derivation and mathematical models of quantum hydrodynamic equations, global existence of weak solutions to the compressible quantum hydrodynamic equations, existence of finite energy weak solutions of inviscid quantum hydrodynamic equations, non-isentropic quantum Navier-Stokes equations with cold pressure, boundary problem of compressible quantum Euler-Poisson equations, asymptotic limit to the bipolar quantum hydrodynamic equations.
This volume contains the proceedings from the International Conference on Nonlinear Evolutionary Partial Differential Equations held in Beijing in June 1993. The topic for the conference was selected because of its importance in the natural sciences and for its mathematical significance. Discussion topics include conservation laws, dispersion waves, Einstein's theory of gravitation, reaction-diffusion equations, the Navier-Stokes equations, and more. New results were presented and are featured in this volume. Titles in this series are co-published with International Press, Cambridge, MA.