You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hybrid Polymeric Nanocomposites from Agricultural Waste examines the use of agricultural by-products for green production of new materials. It covers nanoparticle synthesis from agricultural wastes and nanocomposite development with a focus on polyethylene, polylactic acid, polymethylmethacrylate, and epoxy resins, and considers possible biomedical and engineering applications. Showcases agricultural waste as polymer reinforcements to replace expensive synthetic fibres that discourage wide polymeric nanocomposite applications Discusses green synthesis and characterisation of hybrid nanocomposites from polylactic acid, polymethylmethacrylate, recycled/new polyethylene, and epoxy resins Contrasts hybrid nanocomposites properties with standard nanocomposites, using automotive case studies The book is aimed at researchers, advanced students, and industrial professionals in materials, polymer, and mechanical engineering and related areas interested in the development and application of sustainable materials.
The present book focuses on advancement in the application of heterogeneous catalytic materials for the dehydrogenative synthesis of valuable organic compounds from substrates such as alcohols and simple aliphatic compounds. Several heterogeneous transition metals-based catalytic materials are explored for the synthesis of valuable chemicals for industrial applications. The book provides insight into the application of state-of-the-art technology for energy utilization and clean chemical synthesis. Features: Offers a wide overview of dehydrogenation catalytic chemistry catalyzed by transition metals and their compounds. Helps design novel and more benign and uncomplicated protocols for the s...
Due to the structural flexibility, large surface area, tailorable pore size and functional tenability, metal-organic frameworks (MOFs) can lead to materials with unique properties. This book covers the fundamental aspects of MOFs, their synthesis and modification, including their potential applications in different domains. The major focus is on applications including chemical, biosensors, catalysis, drug delivery, supercapacitors, energy storage, magnetics and their future perspectives. The volume: Covers all aspects related to metal-organic frameworks (MOFs), including characterization, modification, applications and associated challenges Illustrates designing and synthetic strategies for MOFs Describes MOFs for gas adsorption, separation and purification, and their role in heterogeneous catalysis Covers sensing of different types of noxious substances in the aqueous environment Includes concepts of molecular magnetism, tunable magnetic properties and future aspects This book is aimed at graduate students, and researchers in material science, coordination and industrial chemistry, chemical and environmental engineering and clean technologies.
This book provides an overview of the development and selection of functional polymers and nanomaterials for membrane development and their applications. It covers the definition, classification, and preparation of various functional polymers and nanocomposites, and highlights potential applications of functional polymers and nanomaterials in membrane technology. Details the selection of structural and functional materials, as well as material synthesis, modification, and characterization techniques Describes emerging applications of functional materials in wastewater treatment, desalination, energy, and bioremediation Includes numerous industrial case studies, practical examples and questions, providing a comprehensive introduction to the topic Discusses industrial potential, implementation, and limitations By combining aspects of both science and technology, this book serves as a useful resource for scientists and engineers working on membrane applications of materials.
Multidimensional Lithium-Ion Battery Status Monitoring focuses on equivalent circuit modeling, parameter identification, and state estimation in lithium-ion battery power applications. It explores the requirements of high-power lithium-ion batteries for new energy vehicles and systematically describes the key technologies in core state estimation based on battery equivalent modeling and parameter identification methods of lithium-ion batteries, providing a technical reference for the design and application of power lithium-ion battery management systems. Reviews Li-ion battery characteristics and applications. Covers battery equivalent modeling, including electrical circuit modeling and para...
Nanotechnology provides an innovative platform for drug delivery and antiviral actions. This book discusses the utilization of nano-based formulations for the control of viral agents. The antiviral potential of green synthesized silver, chitosan nanoparticles encapsulating curcumin, photoinduced antiviral carbon nanohorns, and the role of carbon-based materials like fullerenes and carbon nanotubes in the repression of viral antigens are explained. The book also covers nanomaterial-based solutions for SARS-CoV-2 and other viral infections. Features: Explains theory and practical applications of nanomaterials as antiviral agents Reviews upscaling of nanomaterials from laboratory to fabrication stage Illustrates nanocurcumin, silver nanoparticles, and carbon nanoparticles for biomedical applications Highlights role of nanotechnology in effectively combating viral infections and pandemics Includes case studies of specific pharma companies This book is aimed at researchers, graduate students in materials science, microbiology and virology, and pharmaceutical sciences.
Research in the field of high-entropy materials is advancing rapidly. High-Entropy Materials: Advances and Applications focuses on materials discovered using the high-entropy alloys (HEA) strategy. It discusses various types of high-entropy materials, such as face-centered cubic (FCC) and body-centered cubic (BCC) HEAs, films and coatings, fibers, and powders and hard-cemented carbides, along with current research status and applications: • Describes, compositions and processing of high-entropy materials. • Summarizes industrially valuable alloys found in high-entropy materials that hold promise for promotion and application. • Explains how high-entropy materials can be used in many fields and can outperform traditional materials. This book is aimed at researchers, advanced students, and academics in materials science and engineering and related disciplines.
This book covers polymer 3D printing through basics of technique and its implementation. It begins with the discussion on fundamentals of new-age printing, know-how of technology, methodology of printing, and product design perspectives. It includes aspects of CAD along with uses of Slicer software, image analysis software and MATLAB® programming in 3D printing of polymers. It covers choice of polymers for printing subject to their structure–property relationship, troubleshooting during printing, and possible uses of waste plastics and other waste materials. Key Features Explores polymeric material printing and design Provides information on the potential for the transformation and manufacturing, reuse and recycling of polymeric material Includes comparison of 3D printing and injection moulding Discusses CAD design and pertinent scaling-up process related to polymers Offers basic strategies for improvement and troubleshooting of 3D printing This book is aimed at professionals and graduate students in polymer and mechanical engineering and materials science and engineering.
Microfluidic biochips have gained prominence due to their versatile applications to biochemistry and health-care domains such as point-of-care clinical diagnosis of tropical and cardiovascular diseases, cancer, diabetes, toxicity analysis, and for the mitigation of the global HIV crisis, among others. Microfluidic Lab-on-Chips (LoCs) offer a convenient platform for emulating various fluidic operations in an automated fashion. However, because of the inherent uncertainty of fluidic operations, the outcome of biochemical experiments performed on-chip can be erroneous even if the chip is tested a priori and deemed to be defect-free. This book focuses on the issues encountered in reliable sample...
Sustainable Nanomaterials for the Construction Industry examines applications of sustainable nanomaterials used in the building construction sector. The chapters focus on sustainable construction materials using nanotechnology such as pigments, modified cement, polymer, glass, phase change materials and air purification. • Highlights nanotechnology applications in smart buildings • Reviews nano-enhanced glass and phase change materials for energy saving and energy storage • Discusses nanomaterials used in air purification applications as well as sustainable pigments • Covers latest developments in polymers, glasses, coatings, paints and insulating materials Aimed at materials and construction engineers, this work offers advanced solutions to enhancing properties of common building materials to improve and extend their performance.