You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. The book will be a useful reference for researchers and graduate students in systems and control, algebraic systems theory, and applied mathematics. Requiring only knowledge of undergraduate-level control and systems theory, the work may be used as a supplementary textbook in a graduate course on optimal control or algebraic systems theory.
The University of Genoa - Ohio State University Joint Conference on New Trends in Systems Theory was held at the Badia di S. Andrea in Genoa on July 9-11, 1990. This Proceedings volume contains articles based on two of the three Plenary talks and most of the shorter presentations. The papers are arranged by author, and no attempt has been made to organize them by topic. We would like to thank the members of the Scientific Committee and of the Program Committee, the speakers and authors, and everyone who attended the conference. Approximately 120 researchers and students from all over the world visited Genoa for the meeting, representing a wide spectrum of areas in pure and applied control an...
Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.
The area of adaptive systems, which encompasses recursive identification, adaptive control, filtering, and signal processing, has been one of the most active areas of the past decade. Since adaptive controllers are fundamentally nonlinear controllers which are applied to nominally linear, possibly stochastic and time-varying systems, their theoretical analysis is usually very difficult. Nevertheless, over the past decade much fundamental progress has been made on some key questions concerning their stability, convergence, performance, and robustness. Moreover, adaptive controllers have been successfully employed in numerous practical applications, and have even entered the marketplace.
During the past decade the interaction between control theory and linear algebra has been ever increasing, giving rise to new results in both areas. As a natural outflow of this research, this book presents information on this interdisciplinary area. The cross-fertilization between control and linear algebra can be found in subfields such as Numerical Linear Algebra, Canonical Forms, Ring-theoretic Methods, Matrix Theory, and Robust Control. This book's editors were challenged to present the latest results in these areas and to find points of common interest. This volume reflects very nicely the interaction: the range of topics seems very wide indeed, but the basic problems and techniques are always closely connected. And the common denominator in all of this is, of course, linear algebra. This book is suitable for both mathematicians and students.
The articles in this volume cover power system model reduction, transient and voltage stability, nonlinear control, robust stability, computation and optimization and have been written by some of the leading researchers in these areas. This book should be of interest to power and control engineers, and applied mathematicians.
This is the seventh volume in the series "Mathematics in Industrial Prob lems. " The motivation for these volumes is to foster interaction between Industry and Mathematics at the "grass roots level;" that is, at the level of specific problems. These problems come from Industry: they arise from models developed by the industrial scientists in ventures directed at the manufacture of new or improved products. At the same time, these prob lems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA Seminar on Industrial Pr...
From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Fadil Santosa, Director of ...
This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations...