You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
'Phylogenetics' is the reconstruction and analysis of phylogenetic (evolutionary) trees and networks based on inherited characteristics. It is a flourishing area of intereaction between mathematics, statistics, computer science and biology.The main role of phylogenetic techniques lies in evolutionary biology, where it is used to infer historical relationships between species. However, the methods are also relevant to a diverse range of fields including epidemiology, ecology, medicine, as well as linguistics and cognitive psychologyThis graduate-level book, based on the authors lectures at The University of Canterbury, New Zealand, focuses on the mathematical aspects of phylogenetics. It brin...
This is the first book on "phylogenetic supertrees", a recent, but controversial development for inferring evolutionary trees. Rather than analyze the combined primary character data directly, supertree construction proceeds by combining the tree topologies derived from those data. This difference in strategy has allowed for the exciting possibility of larger, more complete phylogenies than are otherwise currently possible, with the potential to revolutionize evolutionarily-based research. This book provides a comprehensive look at supertrees, ranging from the methods used to build supertrees to the significance of supertrees to bioinformatic and biological research. Reviews of many the majo...
This book presents a selection of revised full papers accepted for presentation at the First International Conference on Biology, Informatics, and Mathematics, JOBIM 2000, held in Montpellier, France, in May 2000. The 13 papers included in the book were selected after two rounds of reviewing and revision from a total of 67 submissions. Among the topics addressed are algorithms, comparative genomics, evolution, phylogeny, databases, knowledge processing, genome anotation, graph theory, combinatorial mathematics, macromolecular structures, RNA and proteins, metabolic pathways and regulatory networks, and statistics and classification.
The aim of this volume is to explain some of the biology and the computational and mathematical challenges with the modeling and simulation of biological networks. The different chapters provide examples of how these challenges are met, with particular emphasis on nontraditional mathematical approaches. The volume features a broad spectrum of networks across scales, ranging from biochemical networks within a single cell to epidemiological networks encompassing whole cities. Also, this volume is broad in the range of mathematical tools used in solving problems involving these networks.
This book considers evolution at different scales: sequences, genes, gene families, organelles, genomes and species. The focus is on the mathematical and computational tools and concepts, which form an essential basis of evolutionary studies, indicate their limitations, and give them orientation. Recent years have witnessed rapid progress in the mathematics of evolution and phylogeny, with models and methods becoming more realistic, powerful, and complex. Aimed at graduates and researchers in phylogenetics, mathematicians, computer scientists and biologists, and including chapters by leading scientists: A. Bergeron, D. Bertrand, D. Bryant, R. Desper, O. Elemento, N. El-Mabrouk, N. Galtier, O. Gascuel, M. Hendy, S. Holmes, K. Huber, A. Meade, J. Mixtacki, B. Moret, E. Mossel, V. Moulton, M. Pagel, M.-A. Poursat, D. Sankoff, M. Steel, J. Stoye, J. Tang, L.-S. Wang, T. Warnow, Z. Yang, this book of contributed chapters explains the basis and covers the recent results in this highly topical area.
Evolution is a complex process, acting at multiple scales, from DNA sequences and proteins to populations of species. Understanding and reconstructing evolution is of major importance in numerous subfields of biology. For example, phylogenetics and sequence evolution is central to comparative genomics, attempts to decipher genomes, and molecular epidemiology. Phylogenetics is also the focal point of large-scale international biodiversity assessment initiatives such as the 'Tree of Life' project, which aims to build the evolutionary tree for all extant species. Since the pioneering work in phylogenetics in the 1960s, models have become increasingly sophisticated to account for the inherent co...
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics, held on January 11, 2015, in San Antonio, Texas. The papers present connections between techniques from “pure” mathematics and various applications amenable to the analysis of discrete models, encompassing applications of combinatorics, topology, algebra, geometry, optimization, and representation theory. Papers not only present novel results, but also survey the current state of knowledge of important topics in applied discrete mathematics. Particular highlights include: a new computational framework, based on geometric combinatorics, for structure predicti...
None