You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The discovery and development of antibiotics has been one of the most significant advances in medicine. In a golden era lasting from the 1940s to the late 1960s, antibiotic research provided mankind with a wide range of structurally diverse and effective agents for the treatment of microbial infections. Since then, actinomycetes, most notably members of the genus Streptomyces, have uninterruptedly proved to be a particularly rich source of antibiotics and other therapeutic and biotechnologically important compounds. This book brings together expert actinomycetologists to communicate the importance of finding novel antibiotic producing actinomycetes in extreme and marine environments in the light of molecular advances.
Systems biology is a term used to describe a number of trends in bioscience research and a movement that draws on those trends. This volume in the Methods in Enzymology series comprehensively covers the methods in systems biology. With an international board of authors, this volume is split into sections that cover subjects such as machines for systems biology, protein production and quantification for systems biology, and enzymatic assays in systems biology research. - This volume in the Methods in Enzymology series comprehensively covers the methods in systems biology - With an international board of authors, this volume is split into sections that cover subjects such as machines for systems biology, protein production and quantification for systems biology, and enzymatic assays in systems biology research
-Integration of Systems Biology with Bioprocess Engineering: L-Threonine Production by Systems Metabolic Engineering of Escherichia Coli, By Sang Yup Lee and Jin Hwan Park; -Analysis and Engineering of Metabolic Pathway Fluxes in Corynebacterium glutamicum, By Christoph Wittmann; -Systems Biology of Industrial Microorganisms, Marta Papini, Margarita Salazar, and Jens Nielsen; -De Novo Metabolic Engineering and the Promise of Synthetic DNA, By Daniel Klein-Marcuschamer, Vikramaditya G. Yadav, Adel Ghaderi, and Gregory N. Stephanopoulos; -Systems Biology of Recombinant Protein Production in Bacillus megaterium, Rebekka Biedendieck, Boyke Bunk, Tobias Fürich, Ezequiel Franco-Lara, Martina Jahn, and Dieter Jahn; -Extending Synthetic Routes for Oligosaccharides by Enzyme, Substrate and Reaction Engineering; By Jürgen Seibel, Hans-Joachim Jördening, and Klaus Buchholz; -Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds; By Andrea Weckbecker, Harald Gröger, and Werner Hummel;
Pathogens adapt their metabolism rapidly to the host. Our topic covers these phenomenon regarding extracellular and intracellular pathogens as well as general methods to elucidate different metabolic adaptation processes - an essential guide for any scientist wanting to keep abreast of recent developments in infection biology.
Biotechnology represents a major area of research focus, and many universities are developing academic programs in the field. This guide to biomanufacturing contains carefully selected articles from Wiley's Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology as well as new articles (80 in all,) and features the same breadth and quality of coverage and clarity of presentation found in the original. For instructors, advanced students, and those involved in regulatory compliance, this two-volume desk reference offers an accessible and comprehensive resource.
Research on microbes plays an essential role in the improvement of biotechnological and biomedical areas. It has turned into a subject of expanding significance as new organisms and their related biomolecules are being characterized for several applications in health and agriculture. Microbial biomolecules confer the ability of microbes to cope with a range of adverse conditions. However, these biomolecules have several advantages over the plant origin, which makes them a suitable target in drug discovery and development. The reasons could be that microbial sources can be genetically engineered to enhance the production of desired natural production by large-scale fermentation. The interacti...