You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Braja M. Das' PRINCIPLES OF GEOTECHNICAL ENGINEERING provides civil engineering students and professionals with an overview of soil properties and mechanics, combined with a study of field practices and basic soil engineering procedures. Through four editions, this book has distinguished itself by its exceptionally clear theoretical explanations, realistic worked examples, thorough discussions of field testing methods, and extensive problem sets, making this book a leader in its field. Das's goal in revising this best-seller has been to reorganize and revise existing chapters while incorporating the most up-to-date information found in the current literature. Additionally, Das has added numerous case studies as well as new introductory material on the geological side of geotechnical engineering, including coverage of soil formation.
This revised edition is restructured with additional text and extensive illustrations, along with developments in geotechnical literature. Among the topics included are: soil aggregates, stresses in soil mass, pore water pressure due to undrained loading, permeability and seepage, consolidation, shear strength of soils, and evaluation of soil settlement. The text presents mathematical derivations as well as numerous worked-out examples.
Following the popularity of the previous edition, Shallow Foundations: Bearing Capacity and Settlement, Third Edition, covers all the latest developments and approaches to shallow foundation engineering. In response to the high demand, it provides updated data and revised theories on the ultimate and allowable bearing capacities of shallow foundations. Additionally, it features the most recent developments regarding eccentric and inclined loading, the use of stone columns, settlement computations, and more. Example cases have been provided throughout each chapter to illustrate the theories presented.
Theoretical Foundation Engineering provides up-to-date, state-of-the-art reviews of the existing literature on lateral earth pressure, sheet pile walls, ultimate bearing capacity of shallow foundations, holding capacity of plate and helical anchors in sand and clay, and slope stability analysis. The discussion of the ultimate bearing capacity of shallow foundations is the most comprehensive presentation on the subject to be found anywhere, and the review of earth anchors is unique to this book. In addition, each chapter includes several topics which have never appeared in any other book. The treatment is primarily theoretical and does not in any way compete with existing foundation design books. This is the only textbook of its kind. Not only will it be welcomed by teachers and first-year graduate students of geotechnical engineering, but it will be a useful reference for graduate students and consultants in the the field, as well as being a valuable addition to any civil engineering library.
The Geotechnical Engineering Handbook brings together essential information related to the evaluation of engineering properties of soils, design of foundations such as spread footings, mat foundations, piles, and drilled shafts, and fundamental principles of analyzing the stability of slopes and embankments, retaining walls, and other earth-retaining structures. The Handbook also covers soil dynamics and foundation vibration to analyze the behavior of foundations subjected to cyclic vertical, sliding and rocking excitations and topics addressed in some detail include: environmental geotechnology and foundations for railroad beds.
Written in a concise, easy-to understand manner, INTRODUCTION TO GEOTECHNICAL ENGINEERING, 2e, presents intensive research and observation in the field and lab that have improved the science of foundation design. Now providing both U.S. and SI units, this non-calculus-based book is designed for courses in civil engineering technology programs where soil mechanics and foundation engineering are combined into one course. It is also a useful reference tool for civil engineering practitioners.
Now in its fifth edition, this classic textbook continues to offer a well-tailored resource for beginning graduate students in geotechnical engineering. Further developing the basic concepts from undergraduate study, it provides a solid foundation for advanced study. This new edition addresses a variety of recent advances in the field and each section is updated. Braja Das particularly expands the content on consolidation, shear strength of soils, and both elastic and consolidation settlements of shallow foundations to accommodate modern developments. New material includes: Recently published correlations of maximum dry density and optimum moisture content of compaction Recent methods for de...
Now in its sixth edition, Soil Mechanics Laboratory Manual is designed for the junior-level soil mechanics/geotechnical engineering laboratory course in civil engineering programs. It includes eighteen laboratory procedures that cover the essential properties of soils and their behavior under stress and strain, as well as explanations, procedures, sample calculations, and completed and blank data sheets. Written by Braja M. Das, respected author of market-leading texts in geotechnical and foundation engineering, this unique manual provides a detailed discussion of standard soil classification systems used by engineers: the AASHTO Classification System and the Unified Soil Classification Syst...