You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this book is to critically examine whether it is methodologically possible to combine mathematical rigor – topology with a systematic dialectical methodology in Hegel, and if so, to provide as result of my interpretation the outline of Hegel’s Analysis Situs, also with the proposed models (build on the topological manifold, cobordism, topological data analysis, persistent homology, simplicial complexes and graph theory, to provide an indication of how the merger of Hegel’s dialectical logic and topology may be instrumental to a systematic logician and of how a systematic dialectical logic perspective may help mathematical model builders.
This volume is a collection of chapters that present key ideas and theories, as well as their rigorous applications, required for the development of mathematical models in areas such as travelling waves, epidemiology, the chemotaxis system, atrial fibrillation, and vortex nerve complexes. The techniques, methodologies and approaches adopted in this book have relevance in several other fields including physics, biology, and sociology. Each chapter should also assist readers in comfortably comprehending the related and underlying ideas. The companion volume (Contemporary Mathematics, Volume 786) is devoted to principle and theory.
This book is a collection of survey articles on several topics related to the general notion of integrability. It stems from a workshop on ``Mathematical Methods of Regular Dynamics'' dedicated to Sophie Kowalevski. Leading experts introduce corresponding areas in depth. The book provides a broad overview of research, from the pioneering work of the nineteenth century to the developments of the 1970s through the present. The book begins with two historical papers by R. L. Cooke onKowalevski's life and work. Following are 15 research surveys on integrability issues in differential and algebraic geometry, classical complex analysis, discrete mathematics, spinning tops, Painleve equations, global analysis on manifolds, special functions, etc. It concludes with Kowalevski's famouspaper published in Acta Mathematica in 1889, ``Sur le probleme de la rotation d'un corps solide autour d'un point fixe''. The book is suitable for graduate students in pure and applied mathematics, the general mathematical audience studying integrability, and research mathematicians interested in differential and algebraic geometry, analysis, and special functions.
The conjoining of mathematics and biology has brought about significant advances in both areas, with mathematics providing a tool for modelling and understanding biological phenomena and biology stimulating developments in the theory of nonlinear differential equations. The continued application of mathematics to biology holds great promise and in fact may be the applied mathematics of the 21st century. Differential Equations and Mathematical Biology provides a detailed treatment of both ordinary and partial differential equations, techniques for their solution, and their use in a variety of biological applications. The presentation includes the fundamental techniques of nonlinear differenti...
Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion.
The subject of symmetric functions began with the work of Jacobi, Schur, Weyl, Young and others on the Schur polynomials. In the 1950's and 60's, far-reaching generalizations of Schur polynomials were obtained by Hall and Littlewood (independently) and, in a different direction, by Jack. In the 1980's, Macdonald unified these developments by introducing a family of polynomials associated with arbitrary root systems. The last twenty years have witnessed considerable progress in this area, revealing new and profound connections with representation theory, algebraic geometry, combinatorics, special functions, classical analysis and mathematical physics. All these fields and more are represented...
This book presents the proceedings from the International Conference held in Halifax, NS in July 1997. Funded by The Fields Institute and Le Centre de Recherches Mathématiques, the conference was held in honor of the retirement of Professors Lynn Erbe and Herb I. Freedman (University of Alberta). Featured topics include ordinary, partial, functional, and stochastic differential equations and their applications to biology, epidemiology, neurobiology, physiology and other related areas. The 41 papers included in this volume represent the recent work of leading researchers over a wide range of subjects, including bifurcation theory, chaos, stability theory, boundary value problems, persistence theory, neural networks, disease transmission, population dynamics, pattern formation and more. The text would be suitable for a graduate or advanced undergraduate course study in mathematical biology. Features: An overview of current developments in differential equations and mathematical biology. Authoritative contributions from over 60 leading worldwide researchers. Original, refereed contributions.