You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Football fans know them as Clough and Taylor; to Peter’s journalist daughter Wendy Dickinson they were simply ‘Dad and Brian’. Together they won countless honours, including league titles and two European Cups in consecutive years, a feat only matched by one other British manager and club - Bob Paisley and Liverpool. After almost 30 years of friendship and spectacular success they split up, were never reconciled and never spoke again before their untimely deaths. Thousands of headlines, dozens of books and a major feature film have charted the story of the most famous partner, Brian Clough, but little is known of his partner. For Pete’s Sake, the first of two books about Peter Taylor...
Composite Materials is a modern reference book, tutorial in style, covering functions of composites relating to applications in electronic packaging, thermal management, smart structures and other timely technologies rarely covered in existing books on composites. It also treats materials with polymer, metal, cement, carbon and ceramics matrices, contrasting with others that emphasise polymer-matrix composites. This functional approach will be useful to both practitioners and students. A good selection of example problems, solutions and figures, together with a new and vibrant approach, provides a valuable reference source for all engineers working with composite materials.
Surface engineering provides one of the most important means of engineering product differentiation in terms of quality, performance, and lifecycle cost. It is essential to achieve predetermined functional properties of materials such as mechanical strength, biocompatibility, corrosion resistance, wear resistance, and heat and oxidation resistance. Surface Engineering of Biomaterials addresses this topic across a diverse range of process technologies and healthcare applications. Introduces biomaterial surface science and surface engineering and includes criteria for biomaterial surface selection Focuses on a broad array of materials including metals, ceramics, polymers, alloys, and composites Discusses corrosion, degradation, and material release issues in implant materials Covers various processing routes to develop biomaterial surfaces, including for smart and energy applications Details techniques for post-modification of biomaterial surfaces This reference work helps researchers working at the intersection of materials science and biotechnology to engineer functional biomaterials for a variety of applications.
Whilst inkjet technology is well-established on home and small office desktops and is now having increasing impact in commercial printing, it can also be used to deposit materials other than ink as individual droplets at a microscopic scale. This allows metals, ceramics, polymers and biological materials (including living cells) to be patterned on to substrates under precise digital control. This approach offers huge potential advantages for manufacturing, since inkjet methods can be used to generate structures and functions which cannot be attained in other ways. Beginning with an overview of the fundamentals, this bookcovers the key components, for example piezoelectric print-heads and flu...
Fusion bonding is one of the three methods available for joining composite and dissimilar materials. While the other two, mechanical fastening and adhesion bonding, have been the subject of wide coverage both in textbooks and monographs, fusion bonding is covered here substantially for the first time. Fusion bonding offers a number of advantages over traditional joining techniques and it is anticipated that its use will increase dramatically in the future because of the rise in the use of thermoplastic matrix composites and the growing necessity for recyclability of engineering assemblies. Fusion Bonding of Polymer Composites provides an in-depth understanding of the physical mechanisms invo...
Semiconductor spintronics is expected to lead to a new generation of transistors, lasers and integrated magnetic sensors that can be used to create ultra-low power, high speed memory, logic and photonic devices. Useful spintronic devices will need materials with practical magnetic ordering temperatures and current research points to gallium and aluminium nitride magnetic superconductors as having great potential. This book details current research into the properties of III-nitride semiconductors and their usefulness in novel devices such as spin-polarized light emitters, spin field effect transistors, integrated sensors and high temperature electronics. Written by three leading researchers in nitride semiconductors, the book provides an excellent introduction to gallium nitride technology and will be of interest to all reseachers and industrial practitioners wishing to keep up to date with developments that may lead to the next generation of transistors, lasers and integrated magnetic sensors.
Defects in semiconductors have been studied for many years, in many cases with a view toward controlling their behaviour through various forms of “defect engineering”. For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. “Charged Defects in Semiconductors” details the current state of knowledge regarding the properties of the ionized defects that can affect the behaviour of advanced transistors, photo-active devices, catalysts, and sensors. Features: group IV, III-V, and oxide semiconductors; intrinsic and extrinsic defects; and, point defects, as well as defect pairs, complexes and clusters.
This monograph has its origins in a two-day meeting with the same title held in London, England in the spring of 1987. The idea for the meeting came from members of the UK Mineral and Rock Physics Group. It was held under the auspices of, and made possible by the generous support of, the Mineralogical Society of Great Britain and Ireland. Additional financial assistance was provided by ECC International pIc and the Cookson Group pIc. The aims of the London meeting were to survey the current state of knowledge about deformation processes in non-metallic materials and to bring together both experts and less experienced Earth scientists and ceramicists who normally had little contact but shared common interests in deformation mechanisms. This monograph has similar aims and, indeed, most of its authors were keynote speakers at the meeting. Consequently, most of the contributions contain a review element in addition to the presentation and discussion of new results. In adopting this format, the editors hope that the monograph will provide a valuable state-of-the-art sourcebook, both to active researchers and also to graduate students just starting in the relevant fields.
Microbiologically-influenced corrosion (MIC) is one of the greatest mysteries of corrosion science and engineering. This book introduces a new approach to the basics of MIC and explains how to recognise, understand, mitigate and/or prevent this type of corrosion. The material covered will benefit professional and consultant engineers in power generating, oil and gas, and marine and mining industries. It will also benefit researchers in a variety of fields.
Computational Mechanics of Composite Materials lays stress on the advantages of combining theoretical advancements in applied mathematics and mechanics with the probabilistic approach to experimental data in meeting the practical needs of engineers. Features: Programs for the probabilistic homogenisation of composite structures with finite numbers of components allow composites to be treated as homogeneous materials with simpler behaviours. Treatment of defects in the interfaces within heterogeneous materials and those arising in composite objects as a whole by stochastic modelling. New models for the reliability of composite structures. Novel numerical algorithms for effective Monte-Carlo simulation. Computational Mechanics of Composite Materials will be of interest to academic and practising civil, mechanical, electronic and aerospatial engineers, to materials scientists and to applied mathematicians requiring accurate and usable models of the behaviour of composite materials.