You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.
"The text of the book is supported by more than fifty illustrations. Some are Jarry's own and some are those of contemporaries, such as Aubrey Beardsley, Emile Bernard, Pierre Bonnard, Max Elskamp, Charles Filiger, Paul Gauguin, Gerhard Munthe, Henri Rousseau, and Felix Vallotton. Others relate to an iconic intertext, hitherto unexplored. Alfred Jarry: An Imagination in Revolt sheds light on an underresearched area of fin-de-siecle French culture and art history, establishing Jarry's role as a major figure in the origins of modernism."--Jacket.
Surveys developments in the representation theory of finite dimensional algebras and related topics in seven papers illustrating different techniques developed over the recent years. For graduate students and researchers with a background in commutative algebra, including rings, modules, and homological algebra. Suitable as a text for an advanced graduate course. No index. Member prices are $31 for institutions and $23 for individuals, and are available to members of the Canadian Mathematical Society. Annotation copyrighted by Book News, Inc., Portland, OR
Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.
Chaotic behavior of (even the simplest) iterations of polynomial maps of the complex plane was known for almost one hundred years due to the pioneering work of Farou, Julia, and their contemporaries. However, it was only twenty-five years ago that the first computer generated images illustrating properties of iterations of quadratic maps appeared. These images of the so-called Mandelbrot and Julia sets immediately resulted in a strong resurgence of interest in complex dynamics. The present volume, based on the talks at the conference commemorating the twenty-fifth anniversary of the appearance of Mandelbrot sets, provides a panorama of current research in this truly fascinating area of mathematics.
In this work, the maximum entropy method is used to solve the extension problem associated with a positive-definite function, or distribution, defined on an interval of the real line. Garbardo computes explicitly the entropy maximizers corresponding to various logarithmic integrals depending on a complex parameter and investigates the relation to the problem of uniqueness of the extension. These results are based on a generalization, in both the discrete and continuous cases, of Burg's maximum entropy theorem.
Continuous images of ordered continua are investigated. The paper gives various properties of their monotone images and inverse limits of their inverse systems (or sequences) with monotone bonding surjections. Some factorization theorems are provided. Special attention is given to one-dimensional spaces which are continuous images of arcs and, among them, various classes of rim-finite continua. The methods of proofs include cyclic element theory, T-set approximations and null-family decompositions. The paper brings also new properties of cyclic elements and T-sets in locally connected continua, in general.
Through classification of compact abelian group actions on semifinite injective factors, Jones and Takesaki introduced a notion of an action of a measured groupoid on a von Neumann algebra, which was proven to be an important tool for such an analysis. In this paper, elaborating their definition, the author introduces a new concept of a measured groupoid action that may fit more perfectly in the groupoid setting. The author also considers a notion of a coaction of a measured groupoid by showing the existence of a canonical "coproduct" on every groupoid von Neumann algebra.
This work completely characterizes the behaviour of Cesaro means of any order of the Jacobi polynomials. In particular, pointwise estimates are derived for the Cesaro mean kernel. Complete answers are given for the convergence almost everywhere of partial sums of Cesaro means of functions belonging to the critical L ]p spaces. This characterization is deduced from weak type estimates for the maximal partial sum operator. The methods used are fairly general and should apply to other series of special functions.