You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Surveys the state of the art in geometric and cohomological group theory. Ideal entry point for young researchers.
This is an account of the theory of certain types of compact transformation groups, namely those that are susceptible to study using ordinary cohomology theory and rational homotopy theory, which in practice means the torus groups and elementary abelian p-groups. The efforts of many mathematicians have combined to bring a depth of understanding to this area. However to make it reasonably accessible to a wide audience, the authors have streamlined the presentation, referring the reader to the literature for purely technical results and working in a simplified setting where possible. In this way the reader with a relatively modest background in algebraic topology and homology theory can penetrate rather deeply into the subject, whilst the book at the same time makes a useful reference for the more specialised reader.
This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on mo...
Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.
David Acheson transports us into the world of geometry, one of the oldest branches of mathematics. He describes its history, from ancient Greece to the present day, and its emphasis on proofs. With its elegant deduction and practical applications, he demonstrates how geometry offers the quickest route to the spirit of mathematics at its best.
In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concept...
None
Eminent mathematicians have presented papers on homological and combinatorial techniques in group theory. The lectures are aimed at presenting in a unified way new developments in the area.
This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.