You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fuel cells have been recognized to be destined to form the cornerstone of energy technologies in the twenty-first century. The rapid advances in fuel cell system development have left current information available only in scattered journals and Internet sites. Advances in Fuel Cells fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth coverage over a broad scope. The present volume provides informative chapters on thermodynamic performance of fuel cells, macroscopic modeling of polymer-electrolyte membranes, the prospects for phosphonated polymers as proton-exchange fuel cell membranes, polymer electrolyte membranes for direct methanol fuel cells, materials for state of the art PEM fuel cells, and their suitability for operation above 100°C, analytical modelling of direct methanol fuel cells, and methanol reforming processes. - Includes contributions by leading experts working in both academic and industrial R&D - Disseminates the latest research discoveries - A valuable resource for senior undergraduates and graduate students, it provides in-depth coverage over a broad scope
"Energy Technology, Physical Electrochemistry and Battery Divisions."
Large-scale commercialization of proton exchange membrane fuel cell (PEMFC) technology has been hindered by issues of reliability, durability, and cost, which are all related to the degradation of fuel cell performance. This degradation often has root causes in contamination from fuel, air streams, or system components. With contributions from inte
The world’s largest economies have set clear development plans for hydrogen energy. From an Economy, Energy, and Environment (3E) point of view, hydrogen energy can be considered an ideal technology for enabling the energy transition from fossil fuels, restructuring energy systems, securing national energy sources, accelerating carbon neutralization, and driving the development of technologies and industry. Green hydrogen production by water electrolysis is the key for hydrogen energy, and this book offers urgently needed guidance on the most important scientific fundamentals and practical applied technologies in this field. This book: • Details materials, electrochemistry, and mechanics. • Covers ALK, PEM, AEM, and SOEC water electrolysis, including fundamentals and applications. • Addresses trends, opportunities, and challenges. This comprehensive reference is aimed at engineers and scientists working on renewable and alternative energy to meet global energy demands and climate action goals.
This book provides a review of the latest advances in anion exchange membrane fuel cells. Starting with an introduction to the field, it then examines the chemistry and catalysis involved in this energy technology. It also includes an introduction to the mathematical modelling of these fuel cells before discussing the system design and performance of real-world systems. Anion exchange membrane fuel cells are an emerging energy technology that has the potential to overcome many of the obstacles of proton exchange membrane fuel cells in terms of the cost, stability, and durability of materials. The book is an essential reference resource for professionals, researchers, and policymakers around the globe working in academia, industry, and government.
The papers included in this issue of ECS Transactions were originally presented at the 2008 Fuel Cell Seminar & Exposition, held in Phoenix, Arizona, October 27 to October 31, 2008.
Focusing on recent developments in innovative energy conversion, this second volume features emerging applications with the capacity to transform the entire energy economy. Specific examples include the development of sulfonated polyarylether-type polymers as proton exchange membranes for high- and medium-temperature polymer electrode fuel cells (PEFC), with an entire section devoted to the rapidly expanding field of materials development for solid oxide fuel cells (SOFC). The result is a detailed and invaluable source of information for those involved in the chemical, material science and engineering fields of power generation.
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿General Society Student Poster Session¿, held during the 211th meeting of The Electrochemical Society, in Chicago, IL.