You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These lecture notes are devoted to the analysis of a nonlocal equation in the whole of Euclidean space. In studying this equation, all the necessary material is introduced in the most self-contained way possible, giving precise references to the literature when necessary. The results presented are original, but no particular prerequisite or knowledge of the previous literature is needed to read this text. The work is accessible to a wide audience and can also serve as introductory research material on the topic of nonlocal nonlinear equations.
Experience gained during a ten-year long involvement in modelling, program ming and application in nonlinear optimization helped me to arrive at the conclusion that in the interest of having successful applications and efficient software production, knowing the structure of the problem to be solved is in dispensable. This is the reason why I have chosen the field in question as the sphere of my research. Since in applications, mainly from among the nonconvex optimization models, the differentiable ones proved to be the most efficient in modelling, especially in solving them with computers, I started to deal with the structure of smooth optimization problems. The book, which is a result of mo...
None
This book gives an overview of research in the topology and geometry of intersections of quadrics in $\mathbb{R}^n$, with a focus on intersections of concentric ellipsoids and related spaces. Unifying and organizing material previously spread over many articles, it also contains new results. The first part provides very detailed foundations of a wide-ranging theory that could be useful for future developments. It includes chapters on general intersections of quadrics, operations on them, and intersections of concentric and coaxial quadrics. Moving from the general to the specific, the second part focuses on a topological description of transverse intersections of concentric ellipsoids, including a complete description of the case of three ellipsoids, and of some large families of more than three of them. The third part looks at relations to other areas of mathematics such as dynamical systems, complex geometry, contact and symplectic geometry, and other applications. An appendix gathers some technical items and also gives an account of the origins, motivations and progression of the subject, including historical recollections of the author, who has been central to its development.
A unique 3-in-1 study system for the most complete preparation available for the NCLEX-RN(R) exam
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a sufficient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of flexible ellipsoid covers of Rn that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
Techniques for pricing, hedging and trading The Professional Risk Managers' Guide to Financial Instruments will show you how manage the risk of the complex instruments offered to investors. Sponsored by PRMIA and edited by risk management experts Carol Alexander and Elizabeth Sheedy, this authoritative resource features contributions from eleven global experts who explore the major financial instruments, the valuation methods most appropriate for each, and strategies for assessing the associated market risks. The Professional Risk Managers' Guide to Financial Instruments offers step-by-step guidance in: The main types of bonds Futures and forward contracts Caps, floors, and interest rate options Swaps and swaptions Convertible bonds and other hybrid instruments Options, including exotic and path dependent pay-offs Using instruments for hedging and speculation