You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An introductory graduate level text presenting the basics of the subject through a detailed analysis of several important classes of C*-algebras, those which are the basis of the development of operator algebras. Explains the real examples that researchers use to test their hypotheses, and introduces modern concepts and results such as real rank zero algebras, topological stable rank, and quasidiagonality. Includes chapter exercises with hints. For graduate students with a foundation in functional analysis. Annotation copyright by Book News, Inc., Portland, OR
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Almost four-fifths of this book deals with the study of C*-algebras, and the main results due, among others, to Fell, Glimm, Kadison, Kaplansky, Mackey and Segal are expounded. Because of the amount of material accumulated on unitary representations of groups, the latter pages of the book are devoted to a brief account of some aspects of this subject, particularly since the theory of groups provides some of the most interesting examples of C*-algebras. The theory of C*-algebras is still expanding rapidly, but this work remains a clear and accessible introduction to the fundamentals of the subject.
The theory and applications of C Oeu -algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C Oeu -algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C Oeu -algebras (up to isomorphism) by their K -theoretical data. It started with the classification of AT -algebras with real rank zero. Since then great efforts have been made to classify amenable C Oeu -algebras, a class of C Oeu -algebras that arises most naturally. For example, a large class of simple amenable C Oe...
From the reviews: "This book is an excellent and comprehensive survey of the theory of von Neumann algebras. It includes all the fundamental results of the subject, and is a valuable reference for both the beginner and the expert." Mathematical Reviews
"Analyzes algebras of concrete approximation methods detailing prerequisites, local principles, and lifting theorems. Covers fractality and Fredholmness. Explains the phenomena of the asymptotic splitting of the singular values, and more."
This book is directed towards graduate students that wish to start from the basic theory of C*-algebras and advance to an overview of some of the most spectacular results concerning the structure of nuclear C*-algebras. The text is divided into three parts. First, elementary notions, classical theorems and constructions are developed. Then, essential examples in the theory, such as crossed products and the class of quasidiagonal C*-algebras, are examined, and finally, the Elliott invariant, the Cuntz semigroup, and the Jiang-Su algebra are defined. It is shown how these objects have played a fundamental role in understanding the fine structure of nuclear C*-algebras. To help understanding the theory, plenty of examples, treated in detail, are included. This volume will also be valuable to researchers in the area as a reference guide. It contains an extensive reference list to guide readers that wish to travel further.
$\textrm{C}*$-approximation theory has provided the foundation for many of the most important conceptual breakthroughs and applications of operator algebras. This book systematically studies (most of) the numerous types of approximation properties that have been important in recent years: nuclearity, exactness, quasidiagonality, local reflexivity, and others. Moreover, it contains user-friendly proofs, insofar as that is possible, of many fundamental results that were previously quite hard to extract from the literature. Indeed, perhaps the most important novelty of the first ten chapters is an earnest attempt to explain some fundamental, but difficult and technical, results as painlessly as possible. The latter half of the book presents related topics and applications--written with researchers and advanced, well-trained students in mind. The authors have tried to meet the needs both of students wishing to learn the basics of an important area of research as well as researchers who desire a fairly comprehensive reference for the theory and applications of $\textrm{C}*$-approximation theory.
This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical...
to the Encyclopaedia Subseries on Operator Algebras and Non-Commutative Geometry The theory of von Neumann algebras was initiated in a series of papers by Murray and von Neumann in the 1930's and 1940's. A von Neumann algebra is a self-adjoint unital subalgebra M of the algebra of bounded operators of a Hilbert space which is closed in the weak operator topology. According to von Neumann's bicommutant theorem, M is closed in the weak operator topology if and only if it is equal to the commutant of its commutant. Afactor is a von Neumann algebra with trivial centre and the work of Murray and von Neumann contained a reduction of all von Neumann algebras to factors and a classification of facto...