You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The emergence and spectacularly rapid evolution of the field of atomic and molecular clusters are among the most exciting developments in the recent history of natural sciences. The field of clusters expands into the traditional disciplines of physics, chemistry, materials science, and biology, yet in many respects it forms a cognition area of its own. This book presents a cross section of theoretical approaches and their applications in studies of different cluster systems. The contributions are written by experts in the respective areas. The systems discussed range from weakly (van der Waals) bonded, through hydrogen- and covalently bonded, to semiconductor and metallic clusters. The theoretical approaches involve high-level electronic structure computations, more approximate electronic structure treatments, use of semiempirical potentials, dynamical and statistical analyses, and illustrate the utility of both classical and quantum mechanical concepts.
Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a "small" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subject. The authors cover the dynamics of clusters on a broad level, including recent developments of femtosecond laser spectroscopy on the one hand and time-dependent density functional theory calculations on the other.
This title covers the state of the art in this field both theoretically and experimentally. With contributions from leading researchers including several Nobel laureates, it represents a long-lasting source of reference on all aspects of fundamental research into or using atomic and molecular beams.
This important book contains the invited papers (plenary and review lectures, progress and special reports) presented at XX.ICPEAC, the Twentieth International Conference on the Physics of Electronic and Atomic Collisions. It highlights the current status of research in photonic, electronic and atomic collision physics, for which experimental studies increasingly rely on laser and synchrotron radiation and are more and more interrelated with other fields, such as molecular and chemical physics, surface science, quantum optics, and spectroscopy and formation of exotic atoms.
The reactor-based laboratory at the Institut Laue-Langevin is recognized as the world's most productive and reliable source of slow neutrons for the study of low energy particle and nuclear physics. The book highlights the impact of about 600 very diverse publications about work performed in these fields during the past more than 30 years of reactor operation at this institute. On one hand neutrons are used as a tool to generate nuclei in excited states for studying their structure and decay, in particular fission. Uniquely sensitive experiments can tell us a great deal about the symmetry characteristics of nuclei and their fission properties. On the other hand, studies with slow neutrons as the object of investigation are complementary to studies at huge particle accelerators. Experiments carried out at the ILL contribute to elucidate basic questions about the building blocks of the Universe by analyzing very precisely subtle neutron properties.
This volume provides a comprehensive survey by international experts of recent developments in the field of nuclear structure. Both experimental and theoretical issues are covered. On the experimental side, the latest research and the envisaged developments in the most important laboratories, where radioactive ion beams are available, are reviewed in detail. On the theoretical side, the various approaches to a fundamental theory of nuclear structure starting from the nucleon-nucleon interaction are discussed, going from few-body systems, where “ab initio” calculations are possible, to complex nuclei, where the shell model plays a key role. Results of current experimental and theoretical studies on exotic nuclei are also presented.
This practically-oriented overview of nanotechnologies and nanosciences is designed to provide students and researchers with essential information on both the tools of manufacture and specific features of the nanometric scale. Specific applications and techniques covered include nanolithography, STM and AFM, nanowires and supramolecules, molecular electronics, pptronics, and simulation. Each section devotes space to industrial applications and prospective developments. The book provides the only pedagogical review on major nanosciences topics at this level.
This volume provides a comprehensive survey by international experts of recent developments in the field of nuclear structure. Both experimental and theoretical issues are covered. On the experimental side, the latest research and the envisaged developments in the most important laboratories, where radioactive ion beams are available, are reviewed in detail. On the theoretical side, the various approaches to a fundamental theory of nuclear structure starting from the nucleon-nucleon interaction are discussed, going from few-body systems, where ?ab initio? calculations are possible, to complex nuclei, where the shell model plays a key role. Results of current experimental and theoretical studies on exotic nuclei are also presented.