You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Broken tools -- The name is changed, but the tale is told of you -- Double exposure -- Looking backward? -- The national classicist -- Becoming Wang Jingxuan -- Conclusion : pure and chaste writing
This book collects 14 articles from the Special Issue entitled “Deep Learning Applications with Practical Measured Results in Electronics Industries” of Electronics. Topics covered in this Issue include four main parts: (1) environmental information analyses and predictions, (2) unmanned aerial vehicle (UAV) and object tracking applications, (3) measurement and denoising techniques, and (4) recommendation systems and education systems. These authors used and improved deep learning techniques (e.g., ResNet (deep residual network), Faster-RCNN (faster regions with convolutional neural network), LSTM (long short term memory), ConvLSTM (convolutional LSTM), GAN (generative adversarial network), etc.) to analyze and denoise measured data in a variety of applications and services (e.g., wind speed prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several practical experiments were conducted, and the results indicate that the performance of the presented deep learning methods is improved compared with the performance of conventional machine learning methods.
"This book provides a framework for thinking about foundational philosophical questions surrounding machine learning as an approach to artificial intelligence. Specifically, it links recent breakthroughs in deep learning to classical empiricist philosophy of mind. In recent assessments of deep learning's current capabilities and future potential, prominent scientists have cited historical figures from the perennial philosophical debate between nativism and empiricism, which primarily concerns the origins of abstract knowledge. These empiricists were generally faculty psychologists; that is, they argued that the active engagement of general psychological faculties-such as perception, memory, ...
None