You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Pure and Applied Mathematics, Volume 109: Operational Calculus, Second Edition. Volume I presents the foundations of operational calculus and its applications to physics and engineering. This book introduces the operators algebraically as a kind of fractions. Organized into three parts, this volume begins with an overview of the concept as well as the characteristics of a convolution of continuous functions. This text then examines the transitivity, associativity, and distributivity of convolution with regard to addition. Other parts consider the methods of solving other difference equations, particularly in the field of electrical engineering, in which the variable runs over integer values only. This book discusses as well the solution of differential equations under given initial conditions. The final part deals with the characteristic properties of a derivative and provides the definition of algebraic derivative to any operators. This book is a valuable resource for physicists, electrical engineers, mathematicians, and research workers.
Introduction to the Operational Calculus is a translation of "Einfuhrung in die Operatorenrechnung, Second Edition." This book deals with Heaviside's interpretation, on the Laplace integral, and on Jan Mikusinki's fundamental work "Operational Calculus." Throughout the book, basic algebraic concepts appear as aids to understanding some relevant points of the subject. An important field for research in analysis is asymptotic properties. This text also discusses examples to show the potentialities in applying operational calculus that run beyond ordinary differential equations with constant coefficients. In using operational calculus to solve more complicated problems than those of ordinary di...
None
In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of ...
"Based on a math course for advanced undergraduates and graduate students at Cal Tech, this brief monograph requires a background in advanced calculus. Topics include elementary and convergence theories of convolution quotients, differential equations involving operator functions, exponential functions of operators, and problems in partial differential equations. Includes solutions. 1962 edition"--
Operational Calculus, Volume II is a methodical presentation of operational calculus. An outline of the general theory of linear differential equations with constant coefficients is presented. Integral operational calculus and advanced topics in operational calculus, including locally integrable functions and convergence in the space of operators, are also discussed. Formulas and tables are included. Comprised of four sections, this volume begins with a discussion on the general theory of linear differential equations with constant coefficients, focusing on such topics as homogeneous and non-homogeneous equations and applications of operational calculus to partial differential equations. The...
Since the publication of an article by G. DoETSCH in 1927 it has been known that the Laplace transform procedure is a reliable sub stitute for HEAVISIDE's operational calculus*. However, the Laplace transform procedure is unsatisfactory from several viewpoints (some of these will be mentioned in this preface); the most obvious defect: the procedure cannot be applied to functions of rapid growth (such as the 2 function tr-+-exp(t)). In 1949 JAN MIKUSINSKI indicated how the un necessary restrictions required by the Laplace transform can be avoided by a direct approach, thereby gaining in notational as well as conceptual simplicity; this approach is carefully described in MIKUSINSKI's textbook "Operational Calculus" [M 1]. The aims of the present book are the same as MIKUSINSKI's [M 1]: a direct approach requiring no un-necessary restrictions. The present operational calculus is essentially equivalent to the "calcul symbolique" of distributions having left-bounded support (see 6.52 below and pp. 171 to 180 of the textbook "Theorie des distributions" by LAURENT SCHWARTZ).
None
None