You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.
None
Deactivation and Poisoning of Catalysts presents the most current research in the area of heterogeneous catalysis. It focuses on the chemically induced effects associated with bonded surface species that cause catalyst activity decline -- and in some cases a change in catalyst specificity. In addition, this volume examines poisoning of dispersed metal catalysts ... the thermodynamics of sulfur-metal and carbon-metal interactions ... model poisoning reactions on single crystals ... deactivation in petroleum refining and petrochemical processes ... coking of metal catalysts ... and more. The new approaches and solutions to catalyst deactivation and poisoning presented in this guide are invaluable to all heterogeneous catalysis specialists, including chemical and petroleum engineers, and surface, synthetic, physical, and industrial chemists. Book jacket.
Activation, Deactivation, and Poisoning of Catalysts deals with the circumstances and mechanisms underlying catalyst activation, deactivation, and poisoning. The emphasis is on the techniques for handling deactivating systems, not on results per se. Deactivation by fouling and sintering is given consideration. This book is organized into three sections and consists of 12 chapters. The first part is devoted to a systematic development of the manner in which catalysts are activated, deactivated, poisoned, and in some cases reactivated on a microscopic basis. The first chapter explains the concept of the active center as utilized in catalysis, along with catalyst regeneration, rejuvenation, and...
Most catalysts used in the chemical and petrochemical indus tries are strongly affected by one or another form of deactivation, leading to poor performances and reduced life. The increasing num ber of scientific communications devoted to the subject in recent years, and culminating with an International Symposium held in Antwerp in October 1980, is a measure of the interest it arouses in both the industrial and academic communities. A stage has been reached whereby it was thought that a NATO Advanced Study Institute on "Catalyst Deactivation" might be fruit ful in establishing the state of the art and in stimulating a more systematic research on the phenomenon. Such a meeting was held ~n Lag...
None
Catalyst Deactivation 1991 was an expanded version of earlier, highly successful symposia. The symposium featured invited and solicited papers including 4 plenary lectures, 78 oral presentations and 23 poster papers. Most of the papers are contained in this volume.The eight main topics emphasised at this most recent symposium were: deactivation mechanisms/phenomena (carbon deposition, poisoning, and sintering), methods (modeling and techniques), and important catalysts (hydrotreating, oxides, and zeolites). All of these areas were well represented as attested by the substantial number of papers contained in these proceedings. Four review papers based on the plenary lectures provide state-of-the-art perspectives on new thrusts in deactivation research and development.
Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.
Catalyst Deactivation 1994 was an expansion of earlier, highly successful symposia. The objective of the symposium was to promote a scientific approach of the phenomenon of catalyst deactivation which will contribute to the development of catalysts which are less subject to structural transformations and more resistant to poisons and coke formation. These aspects are dealt with in 12 plenary lectures, 48 oral presentations and 35 poster papers, which were critically selected from an impressive response from some 30 countries.Both fundamental and applied aspects were covered. The deactivation of catalysts in important industrial processes like fluid bed catalytic cracking hydrotreatment, hydrodesulfurization, catalytic reforming, hydrodenitrogenation, steam reforming, hydrodemetallization, hydrocracking, Fischer-Tropsch synthesis, propane dehydrogenation, phthalic anhydride synthesis received considerable attention. Mechanisms of poisoning, sintering and coking were further investigated and modelled and new experimental techniques for the characterization and the quantification of deactivation were also introduced.
This Symposium on Catalyst Deactivation ensues those held at Berkeley (1985), Antwerp (1980) and Berkeley (1978).The three main topics emphasised at this most recent symposium were: the techniques used in deactivation studies, the mechanisms of catalyst deactivation, and modelling. With respect to the first, it became apparent that the study of deactivation faces even more difficulties than the characterization of fresh catalysts and the measurement of activity or selectivity, due to the multiplicity of interacting processes occurring during deactivation. Quite substantial progress has been made recently in the understanding of the mechanisms of various deactivation processes, particularly coking, and extra time was accorded to these topics at the symposium. The third topic corresponds to a problem which is very central to development studies and to the chemical engineering aspect of catalysis: it deals with the representativity of accelerated tests and the modelling of the deactivation phenomena.