You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains papers presented at the Workshop on Parallel Processing of Discrete Optimization Problems held at DIMACS in April 1994. The contents cover a wide spectrum of the most recent algorithms and applications in parallel processing of discrete optimization and related problems. Topics include parallel branch and bound algorithms, scalability, load balancing, parallelism and irregular data structures and scheduling task graphs on parallel machines. Applications include parallel algorithms for solving satisfiability problems, location problems, linear programming, quadratic and linear assignment problems. This book would be suitable as a textbook in advanced courses on parallel algorithms and combinatorial optimization.
This text provides an excellent balance of theory and application that enables you to deploy powerful algorithms, frameworks, and methodologies to solve complex optimization problems in a diverse range of industries. Each chapter is written by leading experts in the fields of parallel and distributed optimization. Collectively, the contributions serve as a complete reference to the field of combinatorial optimization, including details and findings of recent and ongoing investigations.
This is the first book where mathematics and computer science are directly confronted and joined to tackle intricate problems in computer science with deep mathematical approaches. It contains a collection of refereed papers presented at the Colloquium on Mathematics and Computer Science held at the University of Versailles-St-Quentin on September 18-20, 2000. The colloquium was a meeting place for researchers in mathematics and computer science and thus an important opportunity to exchange ideas and points of view, and to present new approaches and new results in the common areas such as algorithms analysis, trees, combinatorics, optimization, performance evaluation and probabilities. The book is intended for a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers. It provides an overview of the current questions in computer science and related modern mathematical methods. The range of applications is very wide and reaches beyond computer science.
Efficient parallel solutions have been found to many problems. Some of them can be obtained automatically from sequential programs, using compilers. However, there is a large class of problems - irregular problems - that lack efficient solutions. IRREGULAR 94 - a workshop and summer school organized in Geneva - addressed the problems associated with the derivation of efficient solutions to irregular problems. This book, which is based on the workshop, draws on the contributions of outstanding scientists to present the state of the art in irregular problems, covering aspects ranging from scientific computing, discrete optimization, and automatic extraction of parallelism. Audience: This first book on parallel algorithms for irregular problems is of interest to advanced graduate students and researchers in parallel computer science.
Assignment Problems is a useful tool for researchers, practitioners and graduate students. In 10 self-contained chapters, it provides a comprehensive treatment of assignment problems from their conceptual beginnings through present-day theoretical, algorithmic and practical developments. The topics covered include bipartite matching algorithms, linear assignment problems, quadratic assignment problems, multi-index assignment problems and many variations of these. Researchers will benefit from the detailed exposition of theory and algorithms related to assignment problems, including the basic linear sum assignment problem and its variations. Practitioners will learn about practical applications of the methods, the performance of exact and heuristic algorithms, and software options. This book also can serve as a text for advanced courses in areas related to discrete mathematics and combinatorial optimisation. The revised reprint provides details on a recent discovery related to one of Jacobi's results, new material on inverse assignment problems and quadratic assignment problems, and an updated bibliography.
The methods described here include eigenvalue estimates and reduction techniques for lower bounds, parallelization, genetic algorithms, polyhedral approaches, greedy and adaptive search algorithms.
The disciplines of computer science and operations research (OR) have been linked since their origins, each contributing to the dramatic advances of the other. This work explores the connections between these key technologies: how high-performance computing methods have led to advances in OR de ployment, and how OR has contributed to the design and development of ad vanced systems. The collected writings-from researchers and practitioners in Computer Science, Operations Research, Management Science, and Artificial Intelligence-were among those delivered at the Fifth INFORMS Computer Science Technical Section Conference in Dallas, Texas, January 8-10, 1996. The articles advance both theory an...
Metaheuristics: Progress as Real Problem Solvers is a peer-reviewed volume of eighteen current, cutting-edge papers by leading researchers in the field. Included are an invited paper by F. Glover and G. Kochenberger, which discusses the concept of Metaheuristic agent processes, and a tutorial paper by M.G.C. Resende and C.C. Ribeiro discussing GRASP with path-relinking. Other papers discuss problem-solving approaches to timetabling, automated planograms, elevators, space allocation, shift design, cutting stock, flexible shop scheduling, colorectal cancer and cartography. A final group of methodology papers clarify various aspects of Metaheuristics from the computational view point.
Meta-heuristics have developed dramatically since their inception in the early 1980s. They have had widespread success in attacking a variety of practical and difficult combinatorial optimization problems. These families of approaches include, but are not limited to greedy random adaptive search procedures, genetic algorithms, problem-space search, neural networks, simulated annealing, tabu search, threshold algorithms, and their hybrids. They incorporate concepts based on biological evolution, intelligent problem solving, mathematical and physical sciences, nervous systems, and statistical mechanics. Since the 1980s, a great deal of effort has been invested in the field of combinatorial opt...
For the first time, the very different aspects of trees are presented here in one volume. Articles by specialists working in different areas of mathematics cover disordered systems, algorithms, probability, and p-adic analysis. Researchers and graduate students alike will benefit from the clear expositions.