You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume deals with the Cauchy or initial value problem for linear differential equations. It treats in detail some of the applications of linear space methods to partial differential equations, especially the equations of mathematical physics such as the Maxwell, Schrödinger and Dirac equations. Background material presented in the first chapter makes the book accessible to mathematicians and physicists who are not specialists in this area as well as to graduate students.
Notes and Reports in Mathematics in Science and Engineering, Volume 3: On the Cauchy Problem focuses on the processes, methodologies, and mathematical approaches to Cauchy problems. The publication first elaborates on evolution equations, Lax-Mizohata theorem, and Cauchy problems in Gevrey class. Discussions focus on fundamental proposition, proof of theorem 4, Gevrey property in t of solutions, basic facts on pseudo-differential, and proof of theorem 3. The book then takes a look at micro-local analysis in Gevrey class, including proof and consequences of theorem 1. The manuscript examines Schrödinger type equations, as well as general view-points on evolution equations. Numerical representations and analyses are provided in the explanation of these type of equations. The book is a valuable reference for mathematicians and researchers interested in the Cauchy problem.
The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study o...
This book provides a self-contained introduction to the mathematical theory of hyperbolic systems of conservation laws, with particular emphasis on the study of discontinuous solutions, characterized by the appearance of shock waves. This area has experienced substantial progress in very recent years thanks to the introduction of new techniques, in particular the front tracking algorithm and the semigroup approach. These techniques provide a solution to the long standing open problems of uniqueness and stability of entropy weak solutions. This volume is the first to present a comprehensive account of these new, fundamental advances. It also includes a detailed analysis of the stability and convergence of the front tracking algorithm. A set of problems, with varying difficulty is given at the end of each chapter to verify and expand understanding of the concepts and techniques previously discussed. For researchers, this book will provide an indispensable reference to the state of the art in the field of hyperbolic systems of conservation laws.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator ...
The approach to the Cauchy problem taken here by the authors is based on theuse of Fourier integral operators with a complex-valued phase function, which is a time function chosen suitably according to the geometry of the multiple characteristics. The correctness of the Cauchy problem in the Gevrey classes for operators with hyperbolic principal part is shown in the first part. In the second part, the correctness of the Cauchy problem for effectively hyperbolic operators is proved with a precise estimate of the loss of derivatives. This method can be applied to other (non) hyperbolic problems. The text is based on a course of lectures given for graduate students but will be of interest to researchers interested in hyperbolic partial differential equations. In the latter part the reader is expected to be familiar with some theory of pseudo-differential operators.
Would well repay study by most theoretical physicists." — Physics Today "An overwhelming influence on subsequent work on the wave equation." — Science Progress "One of the classical treatises on hyperbolic equations." — Royal Naval Scientific Service Delivered at Columbia University and the Universities of Rome and Zürich, these lectures represent a pioneering investigation. Jacques Hadamard based his research on prior studies by Riemann, Kirchhoff, and Volterra. He extended and improved Volterra's work, applying its theories relating to spherical and cylindrical waves to all normal hyperbolic equations instead of only to one. Topics include the general properties of Cauchy's problem, the fundamental formula and the elementary solution, equations with an odd number of independent variables, and equations with an even number of independent variables and the method of descent.