You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chap...
There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.
This volume contains the proceedings of a NATO/London Mathematical Society Advanced Study Institute held in Oxford from 25 July - 7 August 1982. The institute concerned the theory and applications of systems of nonlinear partial differential equations, with emphasis on techniques appropriate to systems of more than one equation. Most of the lecturers and participants were analysts specializing in partial differential equations, but also present were a number of numerical analysts, workers in mechanics, and other applied mathematicians. The organizing committee for the institute was J.M. Ball (Heriot-Watt), T.B. Benjamin (Oxford), J. Carr (Heriot-Watt), C.M. Dafermos (Brown), S. Hildebrandt (...
From the reviews: "...the book contains a wealth of material essential to the researcher concerned with multiple integral variational problems and with elliptic partial differential equations. The book not only reports the researches of the author but also the contributions of his contemporaries in the same and related fields. The book undoubtedly will become a standard reference for researchers in these areas. ...The book is addressed mainly to mature mathematical analysts. However, any student of analysis will be greatly rewarded by a careful study of this book." M. R. Hestenes in Journal of Optimization Theory and Applications "The work intertwines in masterly fashion results of classical analysis, topology, and the theory of manifolds and thus presents a comprehensive treatise of the theory of multiple integral variational problems." L. Schmetterer in Monatshefte für Mathematik "The book is very clearly exposed and contains the last modern theory in this domain. A comprehensive bibliography ends the book." M. Coroi-Nedeleu in Revue Roumaine de Mathématiques Pures et Appliquées
This is a textbook that covers several selected topics in the theory of elliptic partial differential equations which can be used in an advanced undergraduate or graduate course.The book considers many important issues such as existence, regularity, qualitative properties, and all the classical topics useful in the wide world of partial differential equations. It also includes applications with interesting examples.The structure of the book is flexible enough to allow different chapters to be taught independently.The book is friendly, welcoming, and written for a newcomer to the subject.It is essentially self-contained, making it easy to read, and all the concepts are fully explained from scratch, combining intuition and rigor, and therefore it can also be read independently by students, with limited or no supervision.
In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variatio...
Expository articles on Several Complex Variables and its interactions with PDEs, algebraic geometry, number theory, and differential geometry, first published in 2000.
One service mathematics has rendered the ~l moil ..., Ii j'avait su comment en revenir, je n'y serais point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'(ftre of this series.