You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This monograph describes and discusses the properties of heterogeneous materials, comparing two fundamental approaches to describing and predicting materials’ properties. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians.
None
In this standard reference of the field, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible displacements in porous media and fractured rock are considered. Two different approaches are discussed and contrasted with each other. The first approach is based on the classical equations of flow and transport, called 'continuum models'. The second approach is based on modern methods of statistical physics of disordered media; that is, on 'discrete models', which have become increasingly popular over the past 15 years. The book is unique in its scope, since (1) there is currently no book that compares the two approaches, and covers all important aspects of porous media problems; and (2) includes discussion of fractured rocks, which so far has been treated as a separate subject. Portions of the book would be suitable for an advanced undergraduate course. The book will be ideal for graduate courses on the subject, and can be used by chemical, petroleum, civil, environmental engineers, and geologists, as well as physicists, applied physicist and allied scientists that deal with various porous media problems.
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled?...
The fundamental concepts of fractal geometry and chaotic dynamics, along with the related concepts of multifractals, self-similar time series, wavelets, and self-organized criticality, are introduced in this book, for a broad range of readers interested in complex natural phenomena. Now in a greatly expanded, second edition, this book relates fractals and chaos to a variety of geological and geophysical applications. All concepts are introduced at the lowest possible level of mathematics consistent with their understanding, so that the reader requires only a background in basic physics and mathematics.
None
The first edition of this book was published in 1994. Since then considerable progress has been made in both theoretical developments of percolation theory, and in its applications. The 2nd edition of this book is a response to such developments. Not only have all of the chapters of the 1st edition been completely rewritten, reorganized, and updated all the way to 2022, but also 8 new chapters have been added that describe extensive new applications, including biological materials, networks and graphs, directed percolation, earthquakes, geochemical processes, and large-scale real world problems, from spread of technology to ad-hoc mobile networks.