You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.
The fifteenth British Combinatorial Conference took place in July 1995 at the University of Stirling. This volume consists of the papers presented by the invited lecturers at the meeting, and provides an up-to-date survey of current research activity in several areas of combinatorics and its applications. These include distance-regular graphs, combinatorial designs, coding theory, spectra of graphs, and randomness and computation. The articles give an overview of combinatorics that will be extremely useful to both mathematicians and computer scientists.
This graduate level text is distinguished both by the range of topics and the novelty of the material it treats--more than half of the material in it has previously only appeared in research papers. The first half of this book introduces the characteristic and matchings polynomials of a graph. It is instructive to consider these polynomials together because they have a number of properties in common. The matchings polynomial has links with a number of problems in combinatorial enumeration, particularly some of the current work on the combinatorics of orthogonal polynomials. This connection is discussed at some length, and is also in part the stimulus for the inclusion of chapters on orthogonal polynomials and formal power series. Many of the properties of orthogonal polynomials are derived from properties of characteristic polynomials. The second half of the book introduces the theory of polynomial spaces, which provide easy access to a number of important results in design theory, coding theory and the theory of association schemes. This book should be of interest to second year graduate text/reference in mathematics.
Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from basic notions of combinatorial enumeration to a variety of topics, ranging from algebra to statistical physics. The book is organized in three parts: Basics, Methods, and Topics. The aim is to introduce readers to a fascinating field, and to offer a sophisticated source of information for professional mathematicians desiring to learn more. There are 666 exercises, and every chapter ends with a highlight section, discussing in detail a particularly beautiful or famous result.
This volume presents the fundamentals of graph theory and then goes on to discuss specific chemical applications. Chapter 1 provides a historical setting for the current upsurge of interest in chemical graph theory. Chapter 2 gives a full background of the basic ideas and mathematical formalism of graph theory and includes such chemically relevant notions as connectedness, graph matrix representations, metric properties, symmetry and operations on graphs. This is followed by a discussion on chemical nomenclature and the trends in its rationalization by using graph theory, which has important implications for the storage and retrieval of chemical information. This volume also contains a detailed discussion of the relevance of graph-theoretical polynomials; it describes methodologies for the enumeration of isomers, incorporating the classical Polya method, as well as more recent approaches.
Handbook of Combinatorics, Volume 1 focuses on basic methods, paradigms, results, issues, and trends across the broad spectrum of combinatorics. The selection first elaborates on the basic graph theory, connectivity and network flows, and matchings and extensions. Discussions focus on stable sets and claw free graphs, nonbipartite matching, multicommodity flows and disjoint paths, minimum cost circulations and flows, special proof techniques for paths and circuits, and Hamilton paths and circuits in digraphs. The manuscript then examines coloring, stable sets, and perfect graphs and embeddings and minors. The book takes a look at random graphs, hypergraphs, partially ordered sets, and matroids. Topics include geometric lattices, structural properties, linear extensions and correlation, dimension and posets of bounded degree, hypergraphs and set systems, stability, transversals, and matchings, and phase transition. The manuscript also reviews the combinatorial number theory, point lattices, convex polytopes and related complexes, and extremal problems in combinatorial geometry. The selection is a valuable reference for researchers interested in combinatorics.
Covers combinatorics in graph theory, theoretical computer science, optimization, and convexity theory, plus applications in operations research, electrical engineering, statistical mechanics, chemistry, molecular biology, pure mathematics, and computer science.
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and
Graduate text focusing on algebraic methods that can be applied to prove the Erdős-Ko-Rado Theorem and its generalizations.