You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 4th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2015, held in Barcelona, Spain, in July 2015. The 34 full and 13 short papers presented in this volume were carefully reviewed and selected from 50 submissions. The themes they deal with are: locomotion, particularly for soft-bodies; novel sensing and autonomous control systems; and cognitive architectures, social robots, and human-robot interaction.
This book constitutes the proceedings of the First International Conference on Biomimetic and Biohybrid Systems, Living Machines 2012, held in Barcelona, Spain, in July 2012. The 28 full papers and 33 extended abstracts presented in this volume were carefully reviewed and selected for inclusion in this book. The conference addresses themes related to the development of future real-world technologies which will depend strongly on our understanding and harnessing of the principles underlying living systems and the flow of communication signals between living and artificial systems.
This book constitutes the proceedings of the Third International Conference on Biomimetic and Biohybrid Systems, Living Machines 2014, held in Milan, Italy, in July/August 2014. The 31 full papers and 27 extended abstracts included in this volume were carefully reviewed and selected from 62 submissions. The topics covered are brain based systems, active sensing, soft robotics, learning, memory, control architectures, self-regulation, movement and locomotion, sensory systems and perception.
This book constitutes the refereed proceedings of the second International Conference on Biomimetic and Biohybrid Systems, Living Machines 2013, held in London, UK, in July/August 2013. The 65 revised full papers presented were carefully reviewed and selected from various submissions. The papers are targeted at the intersection of research on novel live-like technologies inspired by scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems
This book documents the state of the art in the field of ambient assisted living (AAL), highlighting the impressive potential of novel methodologies and technologies to enhance well-being and promote active ageing. The coverage is wide ranging, with sections on care models and algorithms, enabling technologies and assistive solutions, elderly people monitoring, home rehabilitation, ICT solutions for AAL, living with chronic conditions, robotic assistance for the elderly, sensing technologies for AAL, and smart housing. The book comprises a selection of the best papers presented at the 9th Italian Forum on Ambient Assisted Living (ForitAAL 2018), which was held in Lecce, Italy, in July 2018 and brought together end users, technology teams, and policy makers to develop a consensus on how to improve provision for elderly and impaired people. Readers will find that the expert contributions offer clear insights into the ways in which the most recent exciting advances may be expected to assist in addressing the needs of the elderly and those with chronic conditions.
This book constitutes the proceedings of the 6th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2017, held in Stanford, CA, USA, in July 2017.The 42 full and 19 short papers presented in this volume were carefully reviewed and selected from 63 submissions. The theme of the conference encompasses biomimetic methods for manufacture, repair and recycling inspired by natural processes such as reproduction, digestion, morphogenesis and metamorphosis.
The current state of the art in cognitive robotics, covering the challenges of building AI-powered intelligent robots inspired by natural cognitive systems. A novel approach to building AI-powered intelligent robots takes inspiration from the way natural cognitive systems—in humans, animals, and biological systems—develop intelligence by exploiting the full power of interactions between body and brain, the physical and social environment in which they live, and phylogenetic, developmental, and learning dynamics. This volume reports on the current state of the art in cognitive robotics, offering the first comprehensive coverage of building robots inspired by natural cognitive systems. Con...
"Insects walk on water, snakes slither, and fish swim. Animals move with astounding grace, speed, and versatility: how do they do it, and what can we learn from them? In How to Walk on Water and Climb up Walls, David Hu takes readers on an accessible, wondrous journey into the world of animal motion. From basement labs at MIT to the rain forests of Panama, Hu shows how animals have adapted and evolved to traverse their environments, taking advantage of physical laws with results that are startling and ingenious. In turn, the latest discoveries about animal mechanics are inspiring scientists to invent robots and devices that move with similar elegance and efficiency. Hu follows scientists as ...
This book constitutes the proceedings of the 12th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2022, in Genoa, Italy, held in July 19–22, 2022. The 44 full papers and 14 short papers presented were carefully reviewed and selected from 67 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems. The conference aims to highlight the most exciting research in both fields united by the theme of “Living Machines.”
This two volumes constitute the refereed proceedings of the First International Conference on Intelligent Robotics and Applications, ICIRA 2008, held in Wuhan, China, in October 2008. The 265 revised full papers presented were thoroughly reviewed and selected from 552 submissions; they are devoted but not limited to robot motion planning and manipulation; robot control; cognitive robotics; rehabilitation robotics; health care and artificial limb; robot learning; robot vision; human-machine interaction & coordination; mobile robotics; micro/nano mechanical systems; manufacturing automation; multi-axis surface machining; realworld applications.