You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A million cells in our bodies die every second--they commit suicide by activating a process called apoptosis or other forms of programmed cell death. These mechanisms are essential for survival of the body as a whole and play critical roles in various developmental processes, the immune system, and cancer. In this second edition of Douglas Green's essential book on cell death, Green retains the bottom-up approach of the first edition, starting with the enzymes that carry out the execution (caspases) and their cellular targets before examining the machinery that connects them to signals that cause cell death. He also describes the roles of cell death in development, neuronal selection, and th...
Mechanisms of Cell Death and Opportunities for Therapeutic Development, volume four in the Perspectives in Translational Cell Biology series, offers content for professors, students and researchers across basic and translational biology. The book covers fundamental mechanisms, ranging from different forms of cell death and drug development, to efforts for treating disease, providing a valuable resource for readers interested in understanding cell death and relevant translational research. The book's editor, Diaqing Liao, has over twenty years' experience teaching topics of cell death. - Provides a comprehensive overview of current knowledge on the process of apoptosis, its potential role in health and disease, and a discussion of potential alternative forms, such as autophagy - Covers fundamental mechanisms and relevant translational research
These volumes teach readers to think beyond apoptosis and describes all of the known processes that cells can undergo which result in cell death This two-volume source on how cells dies is the first, comprehensive collection to cover all of the known processes that cells undergo when they die. It is also the only one of its kind to compare these processes. It seeks to enlighten those in the field about these many processes and to stimulate their thinking at looking at these pathways when their research system does not show signs of activation of the classic apoptotic pathway. In addition, it links activities like the molecular biology of one process (eg. Necrosis) to another process (eg. apo...
Recently there have been many advances in the understanding of the genetic basis of development and regular breakthroughs are being made in the field of tumour cell targeting. Both these areas of research are coming together in terms of their perception of programmed cell death.
Cellular AGING AND CELL DEATH Edited by Nikki J. Holbrook, George R. Martin, and Richard A.Lockshin Cellular Aging and Cell Death provides a thorough understanding ofthe mechanisms responsible for cellular aging, covering the recentresearch on programmed cell death and senescence, and describingtheir role in the control of cell proliferation and the agingprocess. This one-of-a-kind book is the first to combine the twohottest research areas of cell biology into one comprehensivetext. Leading experts contribute to give readers an authoritativeoverview of the distinct fields of cellular aging and programmedcell death, as well as to demonstrate how both fields are criticalto understanding the ag...
This volume focuses on apoptotic and non-apoptotic programmed cell death, including necroptosis, pyroptosis, and ferroptosis, and presents recent findings in the field. It discusses the crucial role that apoptotic and non-apoptotic cell death play in various pathological conditions, such as skin diseases, inflammatory bowel diseases, and virus infections. Further, it highlights the mechanisms underlying the recognition and clearance of dead cells, and the subsequent biological responses triggered by phagocytosed macrophages and factors released from dying cells. Offering insights into cell death, it is a valuable resource for researchers and clinicians developing novel strategies to treat various diseases that are closely associated with cell death.
Programmed cell death (PCD) is a genetically encoded, active process which results in the death of individual cells, tissues, or whole organs. PCD plays an essential role in plant development and defense, and occurs throughout a plant’s lifecycle from the death of the embryonic suspensor to leaf and floral organ senescence. In plant biology, PCD is a relatively new research area, however, as its fundamental importance is further recognized, publications in the area are beginning to increase significantly. The field currently has few foundational reference books and there is a critical need for books that summarizes recent findings in this important area. This book contains chapters written by several of the world’s leading researchers in PCD. This book will be invaluable for PhD or graduate students, or for scientists and researchers entering the field. Established researchers will also find this timely work useful as an up-to-date overview of this fascinating research area.
This book is a collection of selected and relevant research, concerning the developments within the Cell Death field of study. Each contribution comes as a separate chapter complete in itself but directly related to the books topics and objectives. The target audience comprises scholars and specialists in the field.
A key goal in the treatment of cancer is to achieve selective and efficient killing of tumor cells. The aim of Cell Death Signaling in Cancer Biology and Treatment is to describe state-of-the-art approaches and future opportunities for achieving this goal by targeting mechanisms and pathways that regulate cancer cell death. In this book, molecular defects in cell death signaling that characterize cancer cells, including dysregulation of cell death due to overexpression/hyperactivation of oncoproteins, as well as the loss of tumor suppressor proteins will be described. The potential for targeting microRNAs will be discussed. Multiple chapters will describe preclinical and clinical approaches that are currently being used to target epigenetic modifications, DNA repair pathways, and protein chaperones, as a means of provoking tumor cell death. Finally, the development and application of novel agents and approaches for targeting specific components of cell death signaling pathways and machinery will be reviewed.