You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book shows how to derive the simple and accurate semiclassical methods analytically and its applications to excited-state molecular dynamics and spectroscopy simulation with and without classical trajectories. It consists of eight chapters demonstrating interesting conical and intersystem-driven photochemical processes in complex systems targeting on large-scale ab initio direct nonadiabatic molecular dynamics. It also includes two chapters dealing with time-independent and time-dependent nonadiabatic molecular dynamics and clarifies the underline principle of Born–Oppenheimer approximation associated with coherence/decoherence quantum effects that have a wide range of applications in photochemistry and photophysics. This book is interesting and useful to a wide readership in the various fields of basic quantum chemistry and physics associated with large-scale excited-state simulation of nonadiabatic molecular dynamics and spectroscopy.
In recent decades, time-dependent density functional theory has been developed for computing excited-state properties of large-scale systems to high accuracy in biomolecules and nanomaterials, especially for ab initio nonadiabatic molecular dynamic simulations. It is therefore regarded as a most unique efficient method to do accurate simulation for large complex systems. This book compiles and details cutting-edge research in quantum chemistry and chemical physics from interdisciplinary groups from Japan, China, South Korea, the United States, Hong Kong, and Taiwan. These groups are developing excited-state dynamics methods involving conical intersections and intersystem crossings for large complex systems. Edited by Chaoyuan Zhu, a prominent chemical physics researcher, this book will appeal to anyone involved in molecular dynamics and spectroscopy, photochemistry, biochemistry, and materials chemistry research.
Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers. This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
Quantum phenomena are ubiquitous in complex molecular systems - as revealed by many experimental observations based upon ultrafast spectroscopic techniques - and yet remain a challenge for theoretical analysis. The present volume, based on a May 2005 workshop, examines and reviews the state-of-the-art in the development of new theoretical and computational methods to interpret the observed phenomena. Emphasis is on complex molecular processes involving surfaces, clusters, solute-solvent systems, materials, and biological systems. The research summarized in this book shows that much can be done to explain phenomena in systems excited by light or through atomic interactions. It demonstrates ho...
The field of chemical reaction dynamics has made tremendous progressduring the last decade or so. This is due largely to the developmentof many new, state-of-the-art experimental and theoretical techniquesduring that period. It is beneficial to present these advances, boththeoretical and experimental, in a review volume published in twoparts (Parts I and II). The primary purpose of this review volume isto provide graduate students and experts in the field with a ratherdetailed picture of the current status of advanced experimental andtheoretical research in chemical reaction dynamics. All chapters inthese two parts have been written by world-renowned experts active insuch research.
This annual review, the 50th volume in the series, provides critical analysis for anyone wanting to keep up to date with the literature on photochemistry and its applications. This essential volume combines reviews on the latest advances in photochemical research with specific topical highlights in the field. The volume starts with periodical reports of the recent literature on organic and computational aspects, including computational advances in photochemistry, chemiluminescence and dark photochemistry, organic aspects of photochemistry of alkenes, dienes and polyenes, aromatic compounds, oxygen-containing functions and those functions containing other heteroatoms, and finally a chapter on...
The field of chemical reaction dynamics has made tremendous progress during the last decade or so. This is due largely to the development of many new, state-of-the-art experimental and theoretical techniques during that period. It is beneficial to present these advances, both theoretical and experimental, in a review volume published in two parts (Parts I and II). The primary purpose of this review volume is to provide graduate students and experts in the field with a rather detailed picture of the current status of advanced experimental and theoretical research in chemical reaction dynamics. All chapters in these two parts have been written by world-renowned experts active in such research.
None