You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
None
Accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Topics include classes and sets, functions, natural and cardinal numbers, arithmetic of ordinal numbers, and more. 1971 edition with new material by author.
This book presents modern algebra from first principles and is accessible to undergraduates or graduates. It combines standard materials and necessary algebraic manipulations with general concepts that clarify meaning and importance. This conceptual approach to algebra starts with a description of algebraic structures by means of axioms chosen to suit the examples, for instance, axioms for groups, rings, fields, lattices, and vector spaces. This axiomatic approach—emphasized by Hilbert and developed in Germany by Noether, Artin, Van der Waerden, et al., in the 1920s—was popularized for the graduate level in the 1940s and 1950s to some degree by the authors' publication of A Survey of Modern Algebra. The present book presents the developments from that time to the first printing of this book. This third edition includes corrections made by the authors.
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.
Measure and integration, metric spaces, the elements of functional analysis in Banach spaces, and spectral theory in Hilbert spaces — all in a single study. Only book of its kind. Unusual topics, detailed analyses. Problems. Excellent for first-year graduate students, almost any course on modern analysis. Preface. Bibliography. Index.
This undergraduate text presents extensive coverage of set theory, groups, rings, modules, vector spaces, and fields. It offers numerous examples, definitions, theorems, proofs, and practice exercises. 1991 edition.
Exposition of fourth dimension, concepts of relativity as Flatland characters continue adventures. Topics include curved space time as a higher dimension, special relativity, and shape of space-time. Includes 141 illustrations.