You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.
This volume contains 16 carefully refereed articles by participants in the Special Semester and the AMS Special Session on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University (Baton Rouge). The 23 contributors to this volume were among the 75 mathematicians from 15 countries who participated in the special semester. Topics include the topology of real algebraic curves (Hilbert's 16th problem), moduli of real algebraic curves, effective sums of squares of real forms (Hilbert's 17th problem), efficient real quantifier elimination, subanalytic sets and stratifications, semialgebraic singularity theory, radial vector fields, exponential funct...
Many classical problems in pure and applied mathematics remain unsolved or partially solved. This book studies some of these questions by presenting new and important results that should motivate future research. Strong bookstore candidate.
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
This book gives a nice overview of the diversity of current trends in computational and statistical group theory. It presents the latest research and a number of specific topics, such as growth, black box groups, measures on groups, product replacement algorithms, quantum automata, and more. It includes contributions by speakers at AMS Special Sessions at The University of Nevada (Las Vegas) and the Stevens Institute of Technology (Hoboken, NJ). It is suitable for graduate students and research mathematicians interested in group theory.
This volume presents the proceedings from the conference on Abelian Groups, Rings, and Modules (AGRAM) held at the University of Western Australia (Perth). Included are articles based on talks given at the conference, as well as a few specially invited papers. The proceedings were dedicated to Professor László Fuchs. The book includes a tribute and a review of his work by his long-time collaborator, Professor Luigi Salce. Four surveys from leading experts follow Professor Salce's article. They present recent results from active research areas
This volume is based on a conference held at SUNY, Stony Brook (NY). The concepts of laminations and foliations appear in a diverse number of fields, such as topology, geometry, analytic differential equations, holomorphic dynamics, and renormalization theory. Although these areas have developed deep relations, each has developed distinct research fields with little interaction among practitioners. The conference brought together the diverse points of view of researchers from different areas. This book includes surveys and research papers reflecting the broad spectrum of themes presented at the event. Of particular interest are the articles by F. Bonahon, "Geodesic Laminations on Surfaces", and D. Gabai, "Three Lectures on Foliations and Laminations on 3-manifolds", which are based on minicourses that took place during the conference.
This book is the result of a meeting that took place at the University of Ghent (Belgium) on the relations between Hilbert's tenth problem, arithmetic, and algebraic geometry. Included are written articles detailing the lectures that were given as well as contributed papers on current topics of interest. The following areas are addressed: an historical overview of Hilbert's tenth problem, Hilbert's tenth problem for various rings and fields, model theory and local-global principles, including relations between model theory and algebraic groups and analytic geometry, conjectures in arithmetic geometry and the structure of diophantine sets, for example with Mazur's conjecture, Lang's conjecture, and Bücchi's problem, and results on the complexity of diophantine geometry, highlighting the relation to the theory of computation. The volume allows the reader to learn and compare different approaches (arithmetical, geometrical, topological, model-theoretical, and computational) to the general structural analysis of the set of solutions of polynomial equations. It would make a nice contribution to graduate and advanced graduate courses on logic, algebraic geometry, and number theory
This volume offers the proceedings from the workshop held at the University of Milan (Italy) on groups of homotopy self-equivalences and related topics. The book comprises the articles relating current research on the group of homotopy self-equivalences, homotopy of function spaces, rational homotopy theory, classification of homotopy types, and equivariant homotopy theory. Mathematicians from many areas of the globe attended the workshops to discuss their research and to share ideas. Included are two specially-written articles, by J.W. Rutter, reviewing the work done in the area of homotopy self-equivalences since 1988. Included also is a bibliography of some 122 articles published since 1988 and a list of problems. This book is suitable for both advanced graduate students and researchers.