You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.
About the book In honor of Edgar Enochs and his venerable contributions to a broad range of topics in Algebra, top researchers from around the world gathered at Auburn University to report on their latest work and exchange ideas on some of today's foremost research topics. This carefully edited volume presents the refereed papers of the par
This volume contains the proceedings of a conference on abelian groups held in August 1993 at Oberwolfach. The conference brought together forty-seven participants from all over the world and from a range of mathematical areas. Experts from model theory, set theory, noncommutative groups, module theory, and computer science discussed problems in their fields that relate to abelian group theory. This book provides a window on the frontier of this active area of research.
An almost completely decomposable abelian (acd) group is an extension of a finite direct sum of subgroups of the additive group of rational numbers by a finite abelian group. Examples are easy to write and are frequently used but have been notoriously difficult to study and classify because of their computational nature. However, a general theory of acd groups has been developed and a suitable weakening of isomorphism, Lady's near-isomorphism, has been established as the rightconcept for studying acd groups. A number of important classes of acd groups has been successfully classified. Direct sum decompositions of acd groups are preserved under near-isomorphism and the well-known pathological decompositions can actually be surveyed in special cases.
None
This work presents advances in zero-dimensional commutative rings and commutative algebra. It illustrates the research frontier with 52 open problems together with comments on the relevant literature, and offers a comprehensive index for easy access to information. Wide-ranging developments in commutative ring theory are examined.
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological
With plenty of new material not found in other books, Direct Sum Decompositions of Torsion-Free Finite Rank Groups explores advanced topics in direct sum decompositions of abelian groups and their consequences. The book illustrates a new way of studying these groups while still honoring the rich history of unique direct sum decompositions of groups
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.