Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning Design Patterns
  • Language: en
  • Pages: 408

Machine Learning Design Patterns

The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your...

Deep Learning Interviews
  • Language: en

Deep Learning Interviews

  • Type: Book
  • -
  • Published: 2020-12-09
  • -
  • Publisher: Unknown

The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.

Engineering MLOps
  • Language: en
  • Pages: 370

Engineering MLOps

Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you wit...

Introducing MLOps
  • Language: en
  • Pages: 186

Introducing MLOps

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cyc...

Chaos Monkeys
  • Language: en
  • Pages: 720

Chaos Monkeys

The instant New York Times bestseller, now available in paperback and featuring a new afterword from the author—the insider's guide to the Facebook/Cambridge Analytica scandal, the inner workings of the tech world, and who really runs Silicon Valley “Incisive.... The most fun business book I have read this year.... Clearly there will be people who hate this book — which is probably one of the things that makes it such a great read.” — Andrew Ross Sorkin, New York Times Imagine a chimpanzee rampaging through a datacenter powering everything from Google to Facebook. Infrastructure engineers use a software version of this “chaos monkey” to test online services’ robustness—thei...

Deep Learning
  • Language: en
  • Pages: 801

Deep Learning

  • Type: Book
  • -
  • Published: 2016-11-10
  • -
  • Publisher: MIT Press

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concep...

Accelerate
  • Language: en
  • Pages: 251

Accelerate

Winner of the Shingo Publication Award Accelerate your organization to win in the marketplace. How can we apply technology to drive business value? For years, we've been told that the performance of software delivery teams doesn't matter―that it can't provide a competitive advantage to our companies. Through four years of groundbreaking research to include data collected from the State of DevOps reports conducted with Puppet, Dr. Nicole Forsgren, Jez Humble, and Gene Kim set out to find a way to measure software delivery performance―and what drives it―using rigorous statistical methods. This book presents both the findings and the science behind that research, making the information accessible for readers to apply in their own organizations. Readers will discover how to measure the performance of their teams, and what capabilities they should invest in to drive higher performance. This book is ideal for management at every level.

AI and Machine Learning for Coders
  • Language: en
  • Pages: 393

AI and Machine Learning for Coders

If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving

Cracking The Machine Learning Interview
  • Language: en
  • Pages: 100

Cracking The Machine Learning Interview

"A breakthrough in machine learning would be worth ten Microsofts." -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistica...

Building Machine Learning Powered Applications
  • Language: en
  • Pages: 243

Building Machine Learning Powered Applications

Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you’ll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers—including experienced practitioners and novices alike—will learn the tools, best practices, and challenges involved in building a real-world ML application step by step. Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to ...