You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These notes are the contents of a lecture course given to third year physics undergraduates at the Imperial College who are taking the theoretical physics option. The subject of ?Algebra and Groups? is of considerable importance in a number of branches of modern theoretical physics, and therefore one major objective of the course is to introduce the students to the basic ideas on the subject, bearing in mind the potential applications to quantum theory. However, another equally important aim of the course is to introduce the student to the art of genuine ?mathematical? thinking. The notes are therefore written in a more precise mathematical style than is usually the case in courses aimed at ...
Categories for Quantum Theory: An Introduction lays foundations for an approach to quantum theory that uses category theory, a branch of pure mathematics. Prior knowledge of quantum information theory or category theory helps, but is not assumed, and basic linear algebra and group theory suffices.
Based on lectures given in honour of Stephen Hawking's sixtieth birthday, this book comprises contributions from some of the world's leading theoretical physicists. It begins with a section containing chapters by successful scientific popularisers, bringing to life both Hawking's work and other exciting developments in physics. The book then goes on to provide a critical evaluation of advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. As well as providing a fascinating overview of the wide variety of subject areas to which Stephen Hawking has contributed, this book represents an important assessment of prospects for the future of fundamental physics and cosmology.
This is a selection from over 250 papers published by Abdus Salam. Professor Salam has been Professor of Theoretical Physics at Imperial College, London and Director of the International Centre for Theoretical Physics in Trieste, for which he was largely responsible for creating. He is one of the most distinguished theoretical physicists of his generation and won the Nobel Prize for Physics in 1979 for his work on the unification of electromagnetic and weak interactions. He is well known for his deep interest in the development of scientific research in the third world (to which ICTP is devoted) and has taken a leading part in setting up the Third World Academy. His research work has ranged widely over quantum field theory and all aspects of the theory of elementary particles and more recently into other fields, including high-temperature superconductivity and theoretical biology. The papers selected represent a cross section of his work covering the entire period of 50 years from his student days to the present.
This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.
This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-
Was the first book to examine the exciting area of overlap between philosophy and quantum mechanics with chapters by leading experts from around the world.
Quantum Theory is the most revolutionary discovery in physics since Newton. This book gives a lucid, exciting, and accessible account of the surprising and counterintuitive ideas that shape our understanding of the sub-atomic world. It does not disguise the problems of interpretation that still remain unsettled 75 years after the initial discoveries. The main text makes no use of equations, but there is a Mathematical Appendix for those desiring stronger fare. Uncertainty, probabilistic physics, complementarity, the problematic character of measurement, and decoherence are among the many topics discussed. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.