You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
This book blends theory and applications, reinforcing concepts with practical real-world examples that illustrate the importance of probability to those who will use it in their subsequent courses and careers. The author emphasizes the study of probability distributions that characterize random variables, because this knowledge is essential in performing parametric statistical analysis. Explanations include the "why" as well as the "how" of probability distributions for random variables to help engage readers and further promote their understanding. In addition, the text includes a self-contained chapter on finite Markov chains, which introduces the basic aspects of Markov chains and illustrates their usefulness with several real examples.
The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The author...
The subject theory is important in finance, economics, investment strategies, health sciences, environment, industrial engineering, etc.
Mathematical Statistics with Applications in R, Third Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods, such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem-solving in a logical manner. Step-by-step procedure to solve real problems make the topics very accessible. - Presents step-by-step procedures to solve real problems, making each topic more accessible - Provides updated application exercises in each chapter, blending theory and modern methods with the use of R - Includes new chapters on Categorical Data Analysis and Extreme Value Theory with Applications - Wide array coverage of ANOVA, Nonparametric, Bayesian and empirical methods
This work is based on the International Symposium on Comparison Methods and Stability Theory held in Waterloo, Ontario, Canada. It presents advances in comparison methods and stability theory in a wide range of nonlinear problems, covering a variety of topics such as ordinary, functional, impulsive, integro-, partial, and uncertain differential equations.
The most important properties of normal and Student t-distributions are presented. A number of applications of these properties are demonstrated. New related results dealing with the distributions of the sum, product and ratio of the independent normal and Student distributions are presented. The materials will be useful to the advanced undergraduate and graduate students and practitioners in the various fields of science and engineering.
Bayesian methods are growing more and more popular, finding new practical applications in the fields of health sciences, engineering, environmental sciences, business and economics and social sciences, among others. This book explores the use of Bayesian analysis in the statistical estimation of the unknown phenomenon of interest. The contents demonstrate that where such methods are applicable, they offer the best possible estimate of the unknown. Beyond presenting Bayesian theory and methods of analysis, the text is illustrated with a variety of applications to real world problems.
This book presents the theory of order statistics in a way, such that beginners can get easily acquainted with the very basis of the theory without having to work through heavily involved techniques. At the same time more experienced readers can check their level of understanding and polish their knowledge with certain details. This is achieved by, on the one hand, stating the basic formulae and providing many useful examples to illustrate the theoretical statements, while on the other hand an upgraded list of references will make it easier to gain insight into more specialized results. Thus this book is suitable for a readership working in statistics, actuarial mathematics, reliability engineering, meteorology, hydrology, business economics, sports analysis and many more.