You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Stringently reviewed papers presented at the October 1992 meeting held in Cambridge, Mass., address such topics as nonmonotonic logic; taxonomic logic; specialized algorithms for temporal, spatial, and numerical reasoning; and knowledge representation issues in planning, diagnosis, and natural langu
Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computational complexity of planning. Finding new tractable (i.e. polynomial-time solvable) problems has been a particularly important goal for researchers in the area. The reason behind this is not only to differentiate between easy and hard planning instances, but also to use polynomial-time solvable instances...
AI planning is a broad research topic, linked with such issues as robotics, control theory, operations research and learning. The purpose of EWSP '93 was twofold. Planning under certainty, or classical search-based planning is one direction in the submitted papers, with approaches ranging from the introduction of conditional actions to methods based on statistics and decision theory.
This thesis presents a completely automatic verification framework to check safety properties of parameterized systems. A parameterized system is a family of finite state systems where every system consists of a finite number of processes running in parallel the same algorithm. All the systems in the family differ only in the number of the processes and, in general, the number of systems in a family may be unbounded. Examples of parameterized systems are communication protocols, mutual exclusion protocols, cache coherence protocols, distributed algorithms etc. Model-checking of finite state systems is a well-developed formal verification approach of proving properties of systems in an automa...
The Semantic Web provides a framework for semantically annotating data on the web, and the Resource Description Framework (RDF) supports the integration of structured data represented in heterogeneous formats. Traditionally, the Semantic Web has focused primarily on more or less static data, but information on the web today is becoming increasingly dynamic. RDF Stream Processing (RSP) systems address this issue by adding support for streaming data and continuous query processing. To some extent, RSP systems can be used to perform complex event processing (CEP), where meaningful high-level events are generated based on low-level events from multiple sources; however, there are several challen...
Today's society is increasingly software-driven and dependent on powerful computer technology. Therefore it is important that advancements in the low-level processor hardware are made available for exploitation by a growing number of programmers of differing skill level. However, as we are approaching the end of Moore's law, hardware designers are finding new and increasingly complex ways to increase the accessible processor performance. It is getting more and more difficult to effectively target these processing resources without expert knowledge in parallelization, heterogeneous computation, communication, synchronization, and so on. To ensure that the software side can keep up, advanced p...
Model-based tools and methods are playing important roles in the design and analysis of cyber-physical systems before building and testing physical prototypes. The development of increasingly complex CPSs requires the use of multiple tools for different phases of the development lifecycle, which in turn depends on the ability of the supporting tools to interoperate. However, currently no vendor provides comprehensive end-to-end systems engineering tool support across the entire product lifecycle, and no mature solution currently exists for integrating different system modeling and simulation languages, tools and algorithms in the CPSs design process. Thus, modeling and simulation tools are s...
In the presence of data and computational resources, machine learning can be used to synthesize software automatically. For example, machines are now capable of learning complicated pattern recognition tasks and sophisticated decision policies, two key capabilities in autonomous cyber-physical systems. Unfortunately, humans find software synthesized by machine learning algorithms difficult to interpret, which currently limits their use in safety-critical applications such as medical diagnosis and avionic systems. In particular, successful deployments of safety-critical systems mandate the execution of rigorous verification activities, which often rely on human insights, e.g., to identify sce...
A lot of today's data is generated incrementally over time by a large variety of producers. This data ranges from quantitative sensor observations produced by robot systems to complex unstructured human-generated texts on social media. With data being so abundant, making sense of these streams of data through reasoning is challenging. Reasoning over streams is particularly relevant for autonomous robotic systems that operate in a physical environment. They commonly observe this environment through incremental observations, gradually refining information about their surroundings. This makes robust management of streaming data and its refinement an important problem. Many contemporary approach...
The increasing diversity of connected devices leads to new application domains being envisioned. Some of these need ultra low latency or have privacy requirements that cannot be satisfied by the current cloud. By bringing resources closer to the end user, the recent edge computing paradigm aims to enable such applications. One critical aspect to ensure the successful deployment of the edge computing paradigm is efficient resource management. Indeed, obtaining the needed resources is crucial for the applications using the edge, but the resource picture of this paradigm is complex. First, as opposed to the nearly infinite resources provided by the cloud, the edge devices have finite resources....