You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume, which is dedicated to Heinz Langer, includes biographical material and carefully selected papers. Heinz Langer has made fundamental contributions to operator theory. In particular, he has studied the domains of operator pencils and nonlinear eigenvalue problems, the theory of indefinite inner product spaces, operator theory in Pontryagin and Krein spaces, and applications to mathematical physics. His works include studies on and applications of Schur analysis in the indefinite setting, where the factorization theorems put forward by Krein and Langer for generalized Schur functions, and by Dijksma-Langer-Luger-Shondin, play a key role. The contributions in this volume reflect Heinz Langer’s chief research interests and will appeal to a broad readership whose work involves operator theory.
This volume is dedicated to Heinz Langer, a leading expert in spectral analysis and its applications, in particular to operators in spaces with an indefinite metric, on the occasion of his 60th birthday. The book begins with his biography and list of publications. It contains a selection of research papers, most of which are devoted to spectral analysis of operators or operator pencils with applications to ordinary and partial differential equations. Other papers deal with time-varying systems, interpolation and factorization problems, and topics from mathematical physics. About half of the papers contain further developments in the theory of operators in spaces with an indefinite metric and treat new applications. The book is of interest to a wide audience of pure and applied mathematicians.
This volume is a collection of papers devoted to the 70th birthday of Professor Vladimir Rabinovich. The opening article (by Stefan Samko) includes a short biography of Vladimir Rabinovich, along with some personal recollections and bibliography of his work. It is followed by twenty research and survey papers in various branches of analysis (pseudodifferential operators and partial differential equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue spaces, etc.) close to Professor Rabinovich's research interests. Many of them are written by participants of the International workshop “Analysis, Operator Theory, and Mathematical Physics” (Ixtapa, Mexico, January 23–27, 2012) having a long history of scientific collaboration with Vladimir Rabinovich, and are partially based on the talks presented there.The volume will be of great interest to researchers and graduate students in differential equations, operator theory, functional and harmonic analysis, and mathematical physics.
In a number of famous works, M. Kac showed that various methods of probability theory can be fruitfully applied to important problems of analysis. The interconnection between probability and analysis also plays a central role in the present book. However, our approach is mainly based on the application of analysis methods (the method of operator identities, integral equations theory, dual systems, integrable equations) to probability theory (Levy processes, M. Kac's problems, the principle of imperceptibility of the boundary, signal theory). The essential part of the book is dedicated to problems of statistical physics (classical and quantum cases). We consider the corresponding statistical ...
On November 12-14, 1997 a workshop was held at the Vrije Universiteit Amsterdam on the occasion of the sixtieth birthday ofM. A. Kaashoek. The present volume contains the proceedings of this workshop. The workshop was attended by 44 participants from all over the world: partici pants came from Austria, Belgium, Canada, Germany, Ireland, Israel, Italy, The Netherlands, South Africa, Switzerland, Ukraine and the USA. The atmosphere at the workshop was very warm and friendly. There where 21 plenary lectures, and each lecture was followed by a lively discussion. The workshop was supported by: the Vakgroep Wiskunde of the Vrije Univer siteit, the department of Mathematics and Computer Science of ...
This book presents novel results by participants of the conference “Control theory of infinite-dimensional systems” that took place in January 2018 at the FernUniversität in Hagen. Topics include well-posedness, controllability, optimal control problems as well as stability of linear and nonlinear systems, and are covered by world-leading experts in these areas. A distinguishing feature of the contributions in this volume is the particular combination of researchers from different fields in mathematics working in an interdisciplinary fashion on joint projects in mathematical system theory. More explicitly, the fields of partial differential equations, semigroup theory, mathematical physics, graph and network theory as well as numerical analysis are all well-represented.
Linearization models for discrete and continuous time dynamical systems are the driving forces for modern geometric function theory and composition operator theory on function spaces. This book focuses on a systematic survey and detailed treatment of linearization models for one-parameter semigroups, Schröder’s and Abel’s functional equations, and various classes of univalent functions which serve as intertwining mappings for nonlinear and linear semigroups. These topics are applicable to the study of problems in complex analysis, stochastic and evolution processes and approximation theory.
This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on future developments, hypotheses, and unsolved problems.
This volume contains the proceedings of the 1999 International Conference on Differential Equations and Mathematical Physics. The contributions selected for this volume represent some of the most important presentations by scholars from around the world on developments in this area of research. The papers cover topics in the general area of linear and nonlinear differential equations and their relation to mathematical physics, such as multiparticle Schrödinger operators, stability of matter, relativity theory, fluid dynamics, spectral and scattering theory including inverse problems. Titles in this series are co-published with International Press, Cambridge, MA.
This book contains contributions from the participants of the research group hosted by the ZiF - Center for Interdisciplinary Research at the University of Bielefeld during the period 2013-2017 as well as from the conclusive conference organized at Bielefeld in December 2017. The contributions consist of original research papers: they mirror the scientific developments fostered by this research program or the state-of-the-art results presented during the conclusive conference. The volume covers current research in the areas of operator theory and dynamical systems on networks and their applications, indicating possible future directions. The book will be interesting to researchers focusing on the mathematical theory of networks; it is unique as, for the first time, continuous network models - a subject that has been blooming in the last twenty years - are studied alongside more classical and discrete ones. Thus, instead of two different worlds often growing independently without much intercommunication, a new path is set, breaking with the tradition. The fruitful and beneficial exchange of ideas and results of both communities is reflected in this book.