You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book, a select group of researchers has contributed their state-of-the-art methodologies on protein profiling and identification of disease biomarkers in tissues, microdissected cells and body fluids. The book integrates biochemistry, pathology, analytical technology, bioinformatics, and proteome informatics. Experimental approaches are thoroughly detailed and explained through a step-by-step instructional format that ensures successful results.
In High Throughput Screening, leading scientists and researchers expert in molecular discovery explain the diverse technologies and key techniques used in HTS and demonstrate how they can be applied generically. Writing to create precisely the introductory guidebook they wish had been available when they started in HTS, these expert seasoned authors illuminate the HTS process with richly detailed tutorials on the biological techniques involved, the management of compound libraries, and the automation and engineering approaches needed. Extensive discussions provide readers with all those key elements of pharmacology, molecular biology, enzymology, and biochemistry that will ensure the identification of suitable targets and screens, and detail the technology necessary to mine millions of data points for meaningful knowledge.
Genomic imprinting is the process by which gene activity is regulated according to parent of origin. Usually, this means that either the maternally inherited or the paternally inherited allele of a gene is expressed while the opposite allele is repressed. The phenomenon is largely restricted to mammals and flowering plants and was first recognized at the level of whole genomes. Nuclear transplantation experiments carried out in mice in the late 1970s established the non-equivalence of the maternal and paternal genomes in mammals, and a similar conclusion was drawn from studies of interploidy crosses of flowering plants that extend back to at least the 1930s. Further mouse genetic studies, involving animals carrying balanced translocations (reviewed in Chapter 3), indicated that imprinted genes were likely to be widely scattered and would form a minority within the mammalian genome. The first imprinted genes were identified in the early 1990s; over forty are now known in mammals and the list continues steadily to expand.
Hands-on researchers with proven track records describe in stepwise fashion their advanced mutagenesis techniques. The contributors focus on improvements to conventional site-directed mutagenesis, including a chapter on chemical site-directed mutagenesis, PCR-based mutagenesis and the modifications that allow high throughput mutagenesis experiments, and mutagenesis based on gene disruption (both in vitro- and in situ-based). Additional methods are provided for in vitro gene evolution; for gene disruption based on recombination, transposon, and casette mutagenesis; and for facilitating the introduction of multiple mutations. Time-tested and highly practical, the protocols in In Vitro Mutagenesis Protocols, 2nd Edition offer today's molecular biologists reliable and powerful techniques with which to illuminate the proteome.
There have been significant advances in research involving the isolation and culture of epithelial cells in the past decade, and many new techniques have been developed. Monolayer cultures can be used to evaluate the nature and behavior of cells, while the use of epithelial cells in model systems has allowed a deeper understanding of cellular and molecular mechanisms and interactions. The aim of this book is to provide a comprehensive, step-by-step guide to many techniques for epithelial cell culture, combining in one volume the more commonly used protocols along with many that are more speci- ized. Epithelial Cell Culture Protocols should help those who are new to this field and want to lea...
Determination of the protein sequence is as important today as it was a half century ago, even though the techniques and purposes have changed over time. Mass spectrometry has continued its recent rapid development to find notable application in the characterization of small amounts of protein, for example, in the field of proteomics. The “traditional” chemical N-terminal sequencing is still of great value in quality assurance of the increasing number of biopharmaceuticals that are to be found in the clinic, checking processing events of recombinant proteins, and so on. It is joined in the armory of me- ods of protein analysis by such techniques as C-terminal sequencing and amino acid an...
The rapid identification and characterization of genes of neurological relevance holds great potential for offering insight into the diagnosis, management, and und- standing of the pathophysiologic mechanisms of neurological diseases. This volume in the Methods in Molecular BiologyTM series was conceived to highlight many of the contemporary methodological approaches utilized for the characterization of neu- logically relevant gene mutations and their protein products. Although an emphasis has been placed upon descriptions of methodologies with a defined clinical utility, it is hoped that Neurogenetics: Methods and Protocols will appeal not only to clinical laboratory diagnosticians, but als...
The closing years of the 19th century and the start of the 20th century witnessed the emergence of microbiology and immunology as discrete sci- tific disciplines, and in the work of Roux and Yersin, perhaps the first benefits of their synergy—immunotherapy against bacterial infection. As we advance into the new millennium, microbiology and immunology again offer a c- ceptual leap forward as antibody phage display gains increasing acceptance as the definitive technology for monoclonal production and unleashes new - portunities in immunotherapy, drug discovery, and functional genomics. In assembling Antibody Phage Display: Methods and Protocols, we have aimed to produce a resource of real va...
DNA Methylation Protocols offer a set of readily reproducible protocols of the analysis of DNA methylation and methylases. These powerful methods provide the tools necessary for studying methylation at both the global level and the level of sequence, and include many techniques for identifying genes that might be aberrantly methylated in cancer and aging. Additional methods cover genome-wide analysis of abnormal DNA methylation and the isolation and measurement of demethylases and related proteins.
The past decade has witnessed a spectacular explosion in both the devel- ment and use of transgenic technologies. Not only have these been used to aid our fundamental understanding of biologic mechanisms, but they have also faci- tated the development of a range of disease models that are now truly beginning to impact upon our approach to human disease. Some of the most exciting model systems relate to neurodegenerative disease and cancer, where the availability of appropriate models is at last allowing radically new therapies to be developed and tested. This latter point is of particular significance given the current concerns of the wider public over both the use of animal models and the merits of using genetically modified organisms. Arguably, advances of the greatest significance have been made using mammalian systems—driven by the advent of embryonic stem-cell–based strategies and, more recently, by cloning through nuclear transfer. For this reason, this new edition of Transgenesis Techniques focuses much more heavily on manipulation of the mammalian genome, both in the general discussions and in the provision of specific protocols.