You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The latest volume in the Advanced Biotechnology series provides an overview of the main product classes and platform chemicals produced by biotechnological processes today, with applications in the food, healthcare and fine chemical industries. Alongside the production of drugs and flavors as well as amino acids, bio-based monomers and polymers and biofuels, basic insights are also given as to the biotechnological processes yielding such products and how large-scale production may be enabled and improved. Of interest to biotechnologists, bio and chemical engineers, as well as those working in the biotechnological, chemical, and food industries.
Systems Metabolic Engineering is changing the way microbial cell factories are designed and optimized for industrial production. Integrating systems biology and biotechnology with new concepts from synthetic biology enables the global analysis and engineering of microorganisms and bioprocesses at super efficiency and versatility otherwise not accessible. Without doubt, systems metabolic engineering is a major driver towards bio-based production of chemicals, materials and fuels from renewables and thus one of the core technologies of global green growth. In this book, Christoph Wittmann and Sang-Yup Lee have assembled the world leaders on systems metabolic engineering and cover the full story – from genomes and networks via discovery and design to industrial implementation practises. This book is a comprehensive resource for students and researchers from academia and industry interested in systems metabolic engineering. It provides us with the fundaments to targeted engineering of microbial cells for sustainable bio-production and stimulates those who are interested to enter this exiting research field.
What does the practical work of writing contribute to historical writing? What does it mean for historical knowledge that it is, inescapably, written? Henning Truper explores quotidian practices of writing as constituting the working life of a historian, the Belgian mediaevalist Francois Louis Ganshof (1895-1980). The argument draws on a large variety of texts and writing situations, so as to discuss, across the fault lines of twentieth-century historiography, shifting patterns of methodological discourse; procedures of historicisation; the making of scholarly sociability in writing practice; and finally the actual writing of historical text. Ganshof the historian, whether as author, reader, teacher, student, polemic, diplomat, witness, or mere voice on the radio, remained bound to paperwork, an ensemble of small-scale routines and makeshift solutions that ultimately lacked a central steering agency. The nexus between historical knowledge and paperwork was indissoluble.
The latest volume in the Advanced Biotechnology series provides an overview of the main production hosts and platform organisms used today as well as promising future cell factories in a two volume book. Alongside describing tools for genetic and metabolic engineering for strain improvement, the authors also impart topical information on computational tools, safety aspects and industrial-scale production. Following an introduction to general concepts, historical developments and future technologies, the text goes on to cover multi-purpose bacterial cell factories, including those organisms that exploit anaerobic biosynthetic power. Further chapters deal with microbes used for the production of high-value natural compounds and those obtained from alternative raw material sources, concluding with eukaryotic workhorses.
This second volume of the Metabolic Pathway Engineering Handbook delves into evolutionary tools and gene expression tools for metabolic pathway engineering. It covers applications of emerging technologies including recent research genome-wide technologies, DNA and phenotypic microarrays, and proteomics tools for experimentally determining flux thro
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
This practical book presents the modeling of dynamic biological engineering processes in a readily comprehensible manner, using the unique combination of simplified fundamental theory and direct hands-on computer simulation. The mathematics is kept to a minimum, and yet the 60 examples illustrate almost every aspect of biological engineering science, with each one described in detail, including the model equations. The programs are written in the modern user-friendly simulation language Berkeley Madonna, which can be run on both Windows PC and Power-Macintosh computers. Madonna solves models comprising many ordinary differential equations using very simple programming, including arrays. It i...
None
Unlike other handbooks in this emerging field, this guide focuses on the challenges and critical parameters in running a metabolomics study, including such often-neglected issues as sample preparation, choice of separation and detection method, recording and evaluating data as well as method validation. By systematically covering the entire workflow, from sample preparation to data processing, the insight and advice offered here helps to clear the hurdles in setting up and running a successful analysis, resulting in high-quality data from every experiment. Based on more than a decade of practical experience in developing, optimizing and validating metabolomics approaches as a routine technol...
The development of biotechnology over the last 20 years, and particularly the use of recombinant DNA techniques, has rapidly expanded the opportu- ties for human benefits from living resources. Efforts to reduce pollution, p- vent environmental damage, combat microbial infection, improve food production, and so on can each involve fermentation or the environmental - lease of microorganisms. Many products of fermentation technology, such as alcoholic beverages, bread, antibiotics, amino acids, vitamins, enzymes, and others, have been influenced by the progress of recombinant DNA techniques. The development of new products or the more efficient manufacturing of those already being produced oft...