You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.
This book presents contributions to the topics of materials for energy infrastructure with a focus on data and informatics for materials. This spectrum of topics has been chosen because challenges in terms of materials are identified to lie in transport and storage of energy, adequate supply of food and water, well-working infrastructure, materials for medical application and health, efficient use of scarce resources or elements and alternate materials solutions as well as recycling. The contributions were invited at the 4th WMRIF Young Materials Scientist Workshop held at the National Institute for Standards and Technology (NIST) in Boulder, Colorado, USA during September 8-10, 2014.
This book compiles selected publications authored or co-authored by the editor to present a comprehensive understanding of following topics: (1) fundamentals of thermodynamics, Materials Genome®, and zentropy theory; (2) zentropy theory for prediction of positive and negative thermal expansions. It is noted that while entropy at one scale is well represented by standard statistical mechanics in terms of probability of individual configurations at that scale, the theory capable of counting total entropy of a system from different scales is lacking. The zentropy theory provides a nested form for configurational entropy enabling multiscale modeling to account for disorder and fluctuations from...
None
Most everyday solid materials, from plastics to cosmetic gels, exist in a non-crystalline, amorphous form: they are glasses. Yet we are still seeking an explanation as to what glasses really are and to why they form. In this book, leading experts present broad and original perspectives on one of the deepest mysteries of condensed matter physics.
This volume is the latest in a series of biennial assessments of the scientific and technical quality of the Army Research Laboratory (ARL). The current report summarizes findings for the 2007-2008 period, during which 95 volunteer experts in fields of science and engineering participated in the following activities: visiting ARL annually, receiving formal presentations of technical work, examining facilities, engaging in technical discussions with ARL staff, and reviewing ARL technical materials. The overall quality of ARL's technical staff and their work continues to be impressive, as well as the relevance of their work to Army needs. ARL continues to exhibit a clear, passionate concern fo...