You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Volumes 26 and 27 are both concerned with reactions occurring at electrodes arising through the passage of current. They provide a comprehensive review of the study of electrode kinetics. The basic ideas and experimental methodology are presented in Volume 26 whilst Volume 27 deals with reactions at particular types of electrodes.Chapter 1 serves as an introduction to both volumes and is a survey of the fundamental principles of electrode kinetics. Chapter 2 deals with mass transport - how material gets to and from an electrode. Chapter 3 provides a review of linear sweep and cyclic voltammetry which constitutes an extensively used experimental technique in the field. Chapter 4 discusses a.c. and pulse methods which are a rich source of electrochemical information. Finally, chapter 5 discusses the use of electrodes in which there is forced convection, the so-called ``hydrodynamic electrodes''.
Considers how to go about designing, explaining and interpreting experiments centered around various forms of voltammetry (cyclic, microelectrode, hydrodynamic, and so on). This book gives introductions to the theories of electron transfer and of diffusion. It also introduces convection and describes hydrodynamic electrodes.
The field of electrochemical measurement, with respect to thermodynamics, kinetics and analysis, is widely recognised but the subject can be unpredictable to the novice, even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are, perhaps wisely, never attempted, while the literature is sadly replete with flawed attempts at rigorous voltammetry.This book presents problems and worked solutions for a wide range of theoretical and experimental subjects in the field of voltammetry. The reader is assumed to have knowledge up to a Master's level of physical chemistry, but no exposure to elec...
Another winning primer! This new addition to the popular series provides a basic introduction to equilibrium electrochemistry, focusing on electrode potentials and their applications. It builds on a knowledge of elementary thermodynamics giving the student an appreciation of the origin of electrode potentials and shows how these are used to deduce a wealth of chemically important information and data such as equilibrium constants, the free energy, enthalpy and entropy changes of chemical reactions, activity coefficients, the selective sensing of ions. It is mathematically simple, the emphasis throughout is on understanding the foundations of the subject and how it may be used to study problems of chemical interest.
Preface to the second edition -- Preface to the first edition - Introduction -- Mathematical model of an electrochemical system -- Numerical solution of the model system -- Diffusion-only electrochemical problems in one-dimensional systems -- First-order chemical kinetic mechanisms -- Second-order chemical kinetic mechanisms -- Electrochemical simulation in weakly supported media -- Hydrodynamic voltammetry -- Two-dimensional systems: microdisc electrodes -- Heterogeneous surfaces -- Stochastic electrochemistry.
Surface photovoltage (SPV) techniques provide information about photoactive materials with respect to charge separation in space. This book aims to share experience in measuring and analyzing SPV signals and addresses researchers and developers interested in learning more about and in applying SPV methods. For this purpose, basics about processes in photoactive materials and principles of SPV measurements are combined with examples from research and development over the last two decades.SPV measurements with Kelvin probes, fixed capacitors, electron beams and photoelectrons are explained. Details are given for continuous, modulated and transient SPV spectroscopy. Simulation principles of SPV signals by random walks are introduced and applied for small systems. Application examples are selected for the characterization of silicon surfaces, gallium arsenide layers, electronic states in colloidal quantum dots, transport phenomena in metal oxides and local charge separation across photocatalytic active crystallites.
he power of electrochemical measurements in respect of thermodynamics, kinetics and analysis is widely recognised but the subject can be unpredictable to the novice even if they have a strong physical and chemical background, especially if they wish to pursue quantitative measurements. Accordingly, some significant experiments are perhaps wisely never attempted while the literature is sadly replete with flawed attempts at rigorous voltammetry. This textbook considers how to implement designing, explaining and interpreting experiments centered on various forms of voltammetry (cyclic, microelectrode, hydrodynamic, etc.). The reader is assumed to have knowledge of physical chemistry equivalent to Master's level but no exposure to electrochemistry in general, or voltammetry in particular. While the book is designed to stand alone, references to important research papers are given to provide an introductory entry into the literature. The third edition contains new material relating to electron transfer theory, experimental requirements, scanning electrochemical microscopy, adsorption, electroanalysis and nanoelectrochemistry.
2.6.2 Electrodes for Electrochemistry
Scanning Electrochemical Microscopy describes the theory and operating principles of scanning electrochemical microscopy (SECM), including instrumentation, tip preparation, imaging techniques and potentiometric probes. The book explores applications relevant to electron transfer reactions, reaction kinetics, chemical events at interfaces, biologica
Scotsman Chris Glen found fame in 1972 when his band Tear Gas united with an established Glaswegian rock star to become The Sensational Alex Harvey Band. He went on to work with Michael Schenker, Ian Gillan, John Martyn and many others - and made a point of living every experience open to the bona fide rock star over the past five decades. This is Chris Glen's story in his own words. Co-written with author, rock journalist, musician and former colleague Martin Kielty. Foreword by Eric Singer of Kiss.