You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers all aspects of inertial navigation systems (INS), including the sensor technology and the estimation of instrument errors, as well as their integration with Global Navigation Satellite Systems, specifically the Global Positioning System (GPS) for geodetic applications. The text is of interest to geodesists, including surveyors, mappers, and photogrammetrists; to engineers in aviation, navigation, guidance, transportation, and robotics; and to scientists involved in aerogeophysics and remote sensing. The most recent developments are covered with this second edition that also features an updated treatment of the classical material. Detailed mathematical derivations of the principles of measurement and data processing of inertial measurement units for both stabilized and strapdown systems. Complete treatment of the error dynamics from a statistical viewpoint, including the Kalman filter. A self-contained description of GPS with emphasis on kinematic applications. Key concepts supported by illustrations and numerical examples.
This book covers all aspects of inertial navigation systems (INS), including the sensor technology and the estimation of instrument errors, as well as their integration with the Global Positioning System (GPS) for geodetic applications. Complete mathematical derivations are given. Both stabilized and strapdown mechanizations are treated in detail. Derived algorithms to process sensor data and a comprehensive explanation of the error dynamics provide not only an analytical understanding but also a practical implementation of the concepts. A self-contained description of GPS, with emphasis on kinematic applications, is one of the highlights in this book. The text is of interestto geodesists, including surveyors, mappers, and photogrammetrists; to engineers in aviation, navigation, guidance, transportation, and robotics; and to scientists involved in aerogeophysics and remote sensing.
The lAG International Symposium on Gravity, Geoid, and Space Missions 2004 (GGSM2004) was lield in the beautiful city of Porto, Portugal, from 30 August to 3 September 2004. This symposium encompassed the themes of Commission 2 (Gravity Field) of the newly structured lAG, as well as interdisciplinary topics related to geoid and gravity modeling, with special attention given to the current and planned gravi- dedicated satellite missions. The symposium also followed in the tradition of mid-term meetings that were held between the quadrennial joint meetings of the International Geoid and Gravity Commissions. The previous mid-term meetings were the International Symposia on Gravity, Geoid, and M...
The text develops the principal aspects of applied Fourier analysis and methodology with the main goal to inculcate a different way of perceiving global and regional geodetic and geophysical data, namely from the perspective of the frequency, or spectral, domain rather than the spatial domain. The word "methods" in the title is meant to convey that the transformation of a geophysical signal into the spectral domain can be applied for purposes of analysis as well as rapid computation. The text is written for graduate students; however, Chapters 1 through 4 and parts of 5 can also benefit undergraduates who have a solid and fluent knowledge of integral and differential calculus, have some statistical background, and are not uncomfortable with complex numbers. Concepts are developed by starting from the one-dimensional domain and working up to the spherical domain, which is part of every chapter. Many concepts are illustrated graphically with actual geophysical data primarily from signals of gravity, magnetism, and topography.
The text develops the principal aspects of applied Fourier analysis and methodology with the main goal to inculcate a different way of perceiving global and regional geodetic and geophysical data, namely from the perspective of the frequency, or spectral, domain rather than the spatial domain. The word "methods" in the title is meant to convey that the transformation of a geophysical signal into the spectral domain can be applied for purposes of analysis as well as rapid computation. The text is written for graduate students; however, Chapters 1 through 4 and parts of 5 can also benefit undergraduates who have a solid and fluent knowledge of integral and differential calculus, have some statistical background, and are not uncomfortable with complex numbers. Concepts are developed by starting from the one-dimensional domain and working up to the spherical domain, which is part of every chapter. Many concepts are illustrated graphically with actual geophysical data primarily from signals of gravity, magnetism, and topography.
The fourth edition of this textbook has been thoroughly revised in order to reflect the central role which geodesy has achieved in the past ten years. The Global Geodetic Observing System established by the IAG utilizes a variety of techniques to determine the geometric shape of the earth and its kinematics, the variations of earth rotation, and the earth’s gravity field. Space techniques play a fundamental role, with recent space missions also including gravity field recovery. Terrestrial techniques are important for regional and local applications, and for validating the results of the space missions. Global and regional reference systems are now well established and widely used. They al...
The author of this history of mankind’s increasingly successful attempts to understand, to measure and to map the Earth’s gravity field (commonly known as ‘little g’ or just ‘g’) has been following in the footsteps of the pioneers, intermittently and with a variety of objectives, for more than fifty years. It is a story that begins with Galileo’s early experiments with pendulums and falling bodies, progresses through the conflicts between Hooke and Newton and culminates in the measurements that are now being made from aircraft and satellites. The spectacular increases in accuracy that have been achieved during this period provide the context, but the main focus is on the people...
In the summer of 2000 the German geo-research satellite CHAMP was launched into orbit. Its innovative payload arrangement and the low initial orbit allow CHAMP to simultaneously collect and almost continuously analyse precise data relating to gravity and magnetic fields at low altitude. In addition, CHAMP also measures the neutral atmosphere and ionosphere using GPS techniques. Three years after launch, more than 200 CHAMP investigators and co-investigators from all over the world met at the GeoForschungsZentrum in Potsdam to present and discuss the results derived from the extensive data sets of the mission. The main outcome of this expert meeting is summarized in this volume. The book offers a comprehensive insight into the present status of the exploitation of CHAMP data for Earth system research and practical applications in geodesy, geophysics and meteorology.