Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics
  • Language: en
  • Pages: 399

Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics

Electromagnetic complex media are artificial materials that affect the propagation of electromagnetic waves in surprising ways not usually seen in nature. Because of their wide range of important applications, these materials have been intensely studied over the past twenty-five years, mainly from the perspectives of physics and engineering. But a body of rigorous mathematical theory has also gradually developed, and this is the first book to present that theory. Designed for researchers and advanced graduate students in applied mathematics, electrical engineering, and physics, this book introduces the electromagnetics of complex media through a systematic, state-of-the-art account of their ...

Lattice Theory: Special Topics and Applications
  • Language: en
  • Pages: 625

Lattice Theory: Special Topics and Applications

  • Type: Book
  • -
  • Published: 2016-10-08
  • -
  • Publisher: Birkhäuser

George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, in two volumes, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This second volume is divided into ten chapters contributed by K. Adaricheva, N. Caspard, R. Freese, P. Jipsen, J.B. Nation, N. Reading, H. Rose, L. Santocanale, and F. Wehrung.

Algebra, Geometry and Their Interactions
  • Language: en
  • Pages: 282

Algebra, Geometry and Their Interactions

This volume's papers present work at the cutting edge of current research in algebraic geometry, commutative algebra, numerical analysis, and other related fields, with an emphasis on the breadth of these areas and the beneficial results obtained by the interactions between these fields. This collection of two survey articles and sixteen refereed research papers, written by experts in these fields, gives the reader a greater sense of some of the directions in which this research is moving, as well as a better idea of how these fields interact with each other and with other applied areas. The topics include blowup algebras, linkage theory, Hilbert functions, divisors, vector bundles, determinantal varieties, (square-free) monomial ideals, multiplicities and cohomological degrees, and computer vision.

Open Problems in Algebraic Combinatorics
  • Language: en
  • Pages: 382

Open Problems in Algebraic Combinatorics

In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.

Lie Algebras, Vertex Operator Algebras and Their Applications
  • Language: en
  • Pages: 500

Lie Algebras, Vertex Operator Algebras and Their Applications

The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.

Radon Transforms, Geometry, and Wavelets
  • Language: en
  • Pages: 282

Radon Transforms, Geometry, and Wavelets

This volume is based on two special sessions held at the AMS Annual Meeting in New Orleans in January 2007, and a satellite workshop held in Baton Rouge on January 4-5, 2007. It consists of invited expositions that together represent a broad spectrum of fields, stressing surprising interactions and connections between areas that are normally thought of as disparate. The main topics are geometry and integral transforms. On the one side are harmonic analysis, symmetric spaces,representation theory (the groups include continuous and discrete, finite and infinite, compact and non-compact), operator theory, PDE, and mathematical probability. Moving in the applied direction we encounter wavelets, ...

Computing the Continuous Discretely
  • Language: en
  • Pages: 295

Computing the Continuous Discretely

  • Type: Book
  • -
  • Published: 2015-11-14
  • -
  • Publisher: Springer

This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summat...

Banach Spaces of Analytic Functions
  • Language: en
  • Pages: 162

Banach Spaces of Analytic Functions

This volume is focused on Banach spaces of functions analytic in the open unit disc, such as the classical Hardy and Bergman spaces, and weighted versions of these spaces. Other spaces under consideration here include the Bloch space, the families of Cauchy transforms and fractional Cauchy transforms, BMO, VMO, and the Fock space. Some of the work deals with questions about functions in several complex variables.

Fluids and Waves
  • Language: en
  • Pages: 298

Fluids and Waves

This volume contains a series of articles on wave phenomena and fluid dynamics, highlighting recent advances in these two areas of mathematics. The collection is based on lectures presented at the conference Fluids and Waves--Recent Trends in Applied Analysis and features a rich spectrum of mathematical techniques in analysis and applications to engineering, neuroscience, physics, and biology. The mathematical topics discussed range from partial differential equations, dynamical systems and stochastic processes, to areas of classical analysis. This volume is intended as an introduction to major topics of interest and state-of-the-art analytical research in wave motion and fluid flows.

Combinatorial Reciprocity Theorems
  • Language: en
  • Pages: 325

Combinatorial Reciprocity Theorems

Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.