You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"The purpose of this book is to give a thorough introduction to experimental automatic document retrieval. The topics covered broadly correspond to the components of an experimental retrieval system. A substantial amount of space is devoted to describing various formal (sometimes mathematical) models that exist for certain processes and structures in information retrieval. In the treatment of each topic the author starts from first principles and takes the reader through the subject up to developments in current research"--
An important work on a new framework for information retrieval: implications for artificial intelligence, natural language processing.
A collection of papers proposing, developing, and implementing logical IR models. After an introductory chapter on non-classical logic as the appropriate formalism with which to build IR models, papers are divided into groups on three approaches: logical models, uncertainty models, and meta-models. Topics include preferential models of query by navigation, a logic for multimedia information retrieval, logical imaging and probabilistic information retrieval, and an axiomatic aboutness theory for information retrieval. Can be used as a text for a graduate course on information retrieval or database systems, and as a reference for researchers and practitioners in industry. Annotation copyrighted by Book News, Inc., Portland, OR
Information retrieval (IR) is becoming an increasingly important area as scientific, business and government organisations take up the notion of "information superhighways" and make available their full text databases for searching. Containing a selection of 35 papers taken from the 17th Annual SIGIR Conference held in Dublin, Ireland in July 1994, the book addresses basic research and provides an evaluation of information retrieval techniques in applications. Topics covered include text categorisation, indexing, user modelling, IR theory and logic, natural language processing, statistical and probabilistic models of information retrieval systems, routing, passage retrieval, and implementation issues.
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
This book discusses the use of the real numbers in theorem proving. Typ ically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of float ing point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We de scribe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and t...
A modern information retrieval system must have the capability to find, organize and present very different manifestations of information – such as text, pictures, videos or database records – any of which may be of relevance to the user. However, the concept of relevance, while seemingly intuitive, is actually hard to define, and it's even harder to model in a formal way. Lavrenko does not attempt to bring forth a new definition of relevance, nor provide arguments as to why any particular definition might be theoretically superior or more complete. Instead, he takes a widely accepted, albeit somewhat conservative definition, makes several assumptions, and from them develops a new probab...
This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrie...
The annual colloquium on information retrieval research provides an opportunity for both new and established researchers to present papers describing work in progress or ?nal results. This colloquium was established by the BCS IRSG(B- tish Computer Society Information Retrieval Specialist Group), and named the Annual Colloquium on Information Retrieval Research. Recently, the location of the colloquium has alternated between the United Kingdom and continental Europe. To re?ect the growing European orientation of the event, the colloquium was renamed “European Annual Colloquium on Information Retrieval Research” from 2001. Since the inception of the colloquium in 1979 the event has been h...
This is a comprehensive introduction to Support Vector Machines, a generation learning system based on advances in statistical learning theory.