You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
How Much Is Enough? is an interactive memoir that explores the concept of ENOUGH in all aspects of our lives. There are twenty two chapters, each focussing on one topic, that can be read in any order. Each chapter is braided with questions and reflective exercises designed to inspire readers' self reflection, contemplation and conversation exploring the concept of Enough in their own life.
One of the Top Selling Physics Books according to YBP Library ServicesOrder can be found in all the structures unfolding around us at different scales, including in the arrangements of matter and in energy flow patterns. Aperiodic Structures in Condensed Matter: Fundamentals and Applications focuses on a special kind of order referred to as aperiod
Micellar Liquid Chromatography reviews the use of surfactant solutions at or above the critical micelle concentration as mobile phases in liquid chromatography. It employs a computer-assisted optimization methodology and integrates micellar liquid chromatography (MLC) with other chromatographic and electrophoretic techniques using surfactants. It also includes the MICHROM software package on CD-ROM to facilitate the application of equations and optimize efficiency of MLC systems.
The book provides an introduction to all aspects of the physics of quasicrystals. The chapters, each written by an expert in this field, cover quasiperiodic tilings and the modeling of the atomic structure of quasicrystals. The electronic density of states and the calculation of the electronic structure play a key role in this introduction, as does an extensive discussion of the atomic dynamics. The study of defects in quasicrystals by high resolution electron microscopy and the computer simulations of defects and fracture in decorated tilings are important subjects for the application of these aperiodic crystals.
This book covers remarkable contemporary nanomaterials such as carbon nanomaterials, nanoclays, quantum dots, MXene, and metal-organic frameworks. Each chapter discusses the synthesis techniques, characterization methods, properties, and the nanomaterials’ use in different aspects of biomedical, energy, polymers, material construction, biosensors, coatings, and catalysis. Moreover, commercialization challenges and environmental risks of nanomaterials are also covered in depth. The book provides an understanding of the fundamental properties, limitations and challenges in nanomaterials synthesis, serving as a valuable resource for researchers, graduate students, academicians, and consultants working with nanomaterials for engineering applications.
In its systematic description of the types, structures and properties of chiral stationary phases (CSPs) and their preparation, application and future scope, this volume highlights an assortment of liquid chromatographic, including sub- and super-critical fluid chromatograph.
Used routinely in drug control laboratories, forensic laboratories, and as a research tool, thin layer chromatography (TLC) plays an important role in pharmaceutical drug analyses. It requires less complicated or expensive equipment than other techniques, and has the ability to be performed under field conditions. Filling the need for an up-to-date, complete reference, Thin Layer Chromatography in Drug Analysis covers the most important methods in pharmaceutical applications of TLC, namely, analysis of bulk drug material and pharmaceutical formulations, degradation studies, analysis of biological samples, optimization of the separation of drug classes, and lipophilicity estimation. The book ...
This book is a result of contributions of experts from the international scientific community working in different aspects of graphene science and applications and reports on the state-of-the-art research and development findings on graphene through original and innovative research studies. Through its seven chapters, the reader will have access to works related to the theory and characterization of various planar heterostructures and nanoplatforms based on graphene and also the Compton effect in graphene, while it introduces photoactive graphene from functionalization to applications and also the modeling and control of a smart single-layer graphene sheet. Besides, it presents reviews on the modeling, synthesis, and properties of graphene and graphene technology and its applications in electronic devices.
After the drug discovery and development process, designing suitable formulations to safely deliver the optimum dose, while avoiding side effects, has been a constant challenge, especially when drugs are very toxic and have poor solubility and undesirable clearance profiles. With recent advances in synthetic technologies, nanoparticles can be custom-made from a variety of advanced materials to mimic the bioenvironment and can be equipped with various targeting and imaging moieties for site-specific delivery and real-time imaging. Drug Delivery Using Nanomaterials covers advancements in the field of nanoparticle-based drug-delivery systems, along with all the aspects needed for a successful a...