You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book studies the existence and uniqueness of solutions to parabolic-type equations with irregular coefficients and/or initial conditions. It elaborates on the DiPerna-Lions theory of renormalized solutions to linear transport equations and related equations, and also examines the connection between the results on the partial differential equation and the well-posedness of the underlying stochastic/ordinary differential equation.
Biomedical imaging is a fascinating research area to applied mathematicians. Challenging imaging problems arise and they often trigger the investigation of fundamental problems in various branches of mathematics. This is the first book to highlight the most recent mathematical developments in emerging biomedical imaging techniques. The main focus is on emerging multi-physics and multi-scales imaging approaches. For such promising techniques, it provides the basic mathematical concepts and tools for image reconstruction. Further improvements in these exciting imaging techniques require continued research in the mathematical sciences, a field that has contributed greatly to biomedical imaging and will continue to do so. The volume is suitable for a graduate-level course in applied mathematics and helps prepare the reader for a deeper understanding of research areas in biomedical imaging.
This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.
This is the proceedings volume of an international conference entitled Complex Analysis and Potential Theory, which was held to honor the important contributions of two influential analysts, Kohur N. GowriSankaran and Paul M. Gauthier, in June 2011 at the Centre de Recherches Mathematiques (CRM) in Montreal. More than fifty mathematicians from fifteen countries participated in the conference. The twenty-four surveys and research articles contained in this book are based on the lectures given by some of the most established specialists in the fields. They reflect the wide breadth of research interests of the two honorees: from potential theory on trees to approximation on Riemann surfaces, fr...
This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.
This volume contains a collection of papers presented at the workshop on Spectrum and Dynamics held at the CRM in April 2008. In recent years. many new exciting connections have been established between the spectral theory of elliptic operators and the theory of dynamical systems. A number of articles in the proceedings highlight these discoveries. The volume features a diversity of topics. Such as quantum chaos, spectral geometry. Semiclassical analysis, number theory and ergodic theory. Apart from the research papers aimed at the experts, this book includes several survey articles accessible to a broad math ematical audience.
On the occasion of the fourth International Conference on Industrial and Applied Mathematics!, we decided to organize a sequence of 4 minisymposia devoted to the mathematical aspects and the numerical aspects of Quantum Chemistry. Our goal was to bring together scientists from different communities, namely mathematicians, experts at numerical analysis and computer science, chemists, just to see whether this heterogeneous set of lecturers can produce a rather homogeneous presentation of the domain to an uninitiated audience. To the best of our knowledgde, nothing of this kind had never been tempted so far. It seemed to us that it was the good time for doing it, both . because the interest of ...
This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The presentation is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite element and finite volume viewpoints are exploited to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed.
Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.