You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a completely new approach to understanding the universe. The main idea is that the principal objects in the universe form a spectrum unified by the presence of a massive or hypermassive black hole. These objects are variously called quasars, active galaxies and spiral galaxies. The key to understanding their dynamicsis angular momentum and the key tool, and main innovative idea of this work, is a proper formulation of "Mach's principle" using Sciama's ideas. The new approach provides an explanation for the observed dynamics of spiral galaxies without needing so called "dark matter" and gives a framework that fits the observations of Arp and others that show that quasars typically exhibit instrinsic redshift. These fantastic observations have no place in current mainstream cosmology and, to the lasting shame and discredit of the cosmological community, Arp himself was hounded out and denied observation time on the big telescopes.
The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory.
Since its introduction by Friedhelm Waldhausen in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing Waldhausen's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a "desingularization," improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.
The first five chapters of this book form an introductory course in piece wise-linear topology in which no assumptions are made other than basic topological notions. This course would be suitable as a second course in topology with a geometric flavour, to follow a first course in point-set topology, andi)erhaps to be given as a final year undergraduate course. The whole book gives an account of handle theory in a piecewise linear setting and could be the basis of a first year postgraduate lecture or reading course. Some results from algebraic topology are needed for handle theory and these are collected in an appendix. In a second appen dix are listed the properties of Whitehead torsion which are used in the s-cobordism theorem. These appendices should enable a reader with only basic knowledge to complete the book. The book is also intended to form an introduction to modern geo metric topology as a research subject, a bibliography of research papers being included. We have omitted acknowledgements and references from the main text and have collected these in a set of "historical notes" to be found after the appendices.
This work is set in the field of combinatorial topology, sometimes also referred to as discrete geometric topology, a field of research in the intersection of topology, geometry, polytope theory and combinatorics. The main objects of interest in the field are simplicial complexes that carry some additional structure, forming combinatorial triangulations of the underlying PL manifolds. In particular, polyhedral manifolds as subcomplexes of the boundary complex of a convex regular polytope are investigated. Such a subcomplex is called k-Hamiltonian if it contains the full k-skeleton of the polytope. The notion of tightness of a PL-embedding of a triangulated manifold is closely related to its ...
This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory.