You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of se...
This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.
This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel'skii's famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of recent inequalities for cardinal powers that were obtained in the wake of Silver's breakthrough result saying that the continuum hypothesis can not first fail at a singular cardinal of uncountable cofinality.
Combinatorial Set Theory
Among other subjects explored are the Clements-Lindström extension of the Kruskal-Katona theorem to multisets and the Greene-Kleitmen result concerning k-saturated chain partitions of general partially ordered sets. Includes exercises and solutions.
This volume was born from the experience of the authors as researchers and educators,whichsuggeststhatmanystudentsofdataminingarehandicapped in their research by the lack of a formal, systematic education in its mat- matics. The data mining literature contains many excellent titles that address the needs of users with a variety of interests ranging from decision making to p- tern investigation in biological data. However, these books do not deal with the mathematical tools that are currently needed by data mining researchers and doctoral students. We felt it timely to produce a book that integrates the mathematics of data mining with its applications. We emphasize that this book is about mat...
This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.
This book comprises five expository articles and two research papers on topics of current interest in set theory and the foundations of mathematics. Articles by Baumgartner and Devlin introduce the reader to proper forcing. This is a development by Saharon Shelah of Cohen's method which has led to solutions of problems that resisted attack by forcing methods as originally developed in the 1960s. The article by Guaspari is an introduction to descriptive set theory, a subject that has developed dramatically in the last few years. Articles by Kanamori and Stanley discuss one of the most difficult concepts in contemporary set theory, that of the morass, first created by Ronald Jensen in 1971 to solve the gap-two conjecture in model theory, assuming Gödel's axiom of constructibility. The papers by Prikry and Shelah complete the volume by giving the reader the flavour of contemporary research in set theory. This book will be of interest to graduate students and research workers in set theory and mathematical logic.
Combinatorics is a book whose main theme is the study of subsets of a finite set. It gives a thorough grounding in the theories of set systems and hypergraphs, while providing an introduction to matroids, designs, combinatorial probability and Ramsey theory for infinite sets. The gems of the theory are emphasized: beautiful results with elegant proofs. The book developed from a course at Louisiana State University and combines a careful presentation with the informal style of those lectures. It should be an ideal text for senior undergraduates and beginning graduates.