Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Building Capacity for Teaching Engineering in K-12 Education
  • Language: en
  • Pages: 261

Building Capacity for Teaching Engineering in K-12 Education

Engineering education is emerging as an important component of US K-12 education. Across the country, students in classrooms and after- and out-of-school programs are participating in hands-on, problem-focused learning activities using the engineering design process. These experiences can be engaging; support learning in other areas, such as science and mathematics; and provide a window into the important role of engineering in society. As the landscape of K-12 engineering education continues to grow and evolve, educators, administrators, and policy makers should consider the capacity of the US education system to meet current and anticipated needs for K-12 teachers of engineering. Building ...

Building Capacity for Teaching Engineering in K-12 Education
  • Language: en
  • Pages: 261

Building Capacity for Teaching Engineering in K-12 Education

Engineering education is emerging as an important component of US K-12 education. Across the country, students in classrooms and after- and out-of-school programs are participating in hands-on, problem-focused learning activities using the engineering design process. These experiences can be engaging; support learning in other areas, such as science and mathematics; and provide a window into the important role of engineering in society. As the landscape of K-12 engineering education continues to grow and evolve, educators, administrators, and policy makers should consider the capacity of the US education system to meet current and anticipated needs for K-12 teachers of engineering. Building ...

Engineering in K-12 Education
  • Language: en
  • Pages: 595

Engineering in K-12 Education

Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological i...

Standards for K-12 Engineering Education?
  • Language: en
  • Pages: 160

Standards for K-12 Engineering Education?

The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education-science, technology, and mathematic-but not for engineering. To date, a small but growing number of K-12 students are being exposed to engineering-related materials, and limited but intriguing evidence suggests that engineering education can stimulate interest and improve learning in mathematics and science as well as improve understanding of engineering and technology. Given this background, a reasonable question is whether standards would improve the quality ...

A Framework for K-12 Science Education
  • Language: en
  • Pages: 400

A Framework for K-12 Science Education

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science ...

STEM Integration in K-12 Education
  • Language: en
  • Pages: 143

STEM Integration in K-12 Education

STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.

Changing Expectations for the K-12 Teacher Workforce
  • Language: en
  • Pages: 223

Changing Expectations for the K-12 Teacher Workforce

Teachers play a critical role in the success of their students, both academically and in regard to long term outcomes such as higher education participation and economic attainment. Expectations for teachers are increasing due to changing learning standards and a rapidly diversifying student population. At the same time, there are perceptions that the teaching workforce may be shifting toward a younger and less experienced demographic. These actual and perceived changes raise important questions about the ways teacher education may need to evolve in order to ensure that educators are able to meet the needs of students and provide them with classroom experiences that will put them on the path...

Handbook of STEM Faculty Development
  • Language: en
  • Pages: 416

Handbook of STEM Faculty Development

  • Type: Book
  • -
  • Published: 2022-12-01
  • -
  • Publisher: IAP

Faculty in the science, technology, engineering, and mathematics (STEM) disciplines face intensifying pressures in the 21st century, including multiple roles as educator, researcher, and entrepreneur. In addition to continuously increasing teaching and service expectations, faculty are engaged in substantive research that requires securing external funding, mentoring other faculty and graduate students, and disseminating this work in a broad range of scholarly outlets. Societal needs of their expertise include discovery, innovation, and workforce development. It is critical to provide STEM faculty with the professional development to support their complex roles and to base this development o...

Preparing Teachers
  • Language: en
  • Pages: 234

Preparing Teachers

Teachers make a difference. The success of any plan for improving educational outcomes depends on the teachers who carry it out and thus on the abilities of those attracted to the field and their preparation. Yet there are many questions about how teachers are being prepared and how they ought to be prepared. Yet, teacher preparation is often treated as an afterthought in discussions of improving the public education system. Preparing Teachers addresses the issue of teacher preparation with specific attention to reading, mathematics, and science. The book evaluates the characteristics of the candidates who enter teacher preparation programs, the sorts of instruction and experiences teacher c...

Monitoring Progress Toward Successful K-12 STEM Education
  • Language: en
  • Pages: 65

Monitoring Progress Toward Successful K-12 STEM Education

Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's capacity, and policy and funding initiatives in STEM, the committee addresses the need for research...