You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Featuring presentations from the Fourth International Conference on Commutative Algebra held in Fez, Morocco, this reference presents trends in the growing area of commutative algebra. With contributions from nearly 50 internationally renowned researchers, the book emphasizes innovative applications and connections to algebraic number theory, geome
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with m...
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to co...
This monograph arose from lectures at the University of Oklahoma on topics related to linear algebra over commutative rings. It provides an introduction of matrix theory over commutative rings. The monograph discusses the structure theory of a projective module.
This volume contains expository lectures by Melvin Hochster from the CBMS Regional Conference in Mathematics held at the University of Nebraska, June 1974. The lectures deal mainly with recent developments and still open questions in the homological theory of modules over commutative (usually, Noetherian) rings. A good deal of attention is given to the role ``big'' Cohen-Macaulay modules play in clearing up some of the open questions. A modest knowledge of commutative rings and familarity with (the long exact sequences for) Tor and Ext should suffice as a background for the reader.
Aimed at the novice rather than the connoisseur and stressing the role of examples and motivation, this text is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
This book explores commutative ring theory, an important a foundation for algebraic geometry and complex analytical geometry.
Noncommutative Rings provides a cross-section of ideas, techniques, and results that give the reader an idea of that part of algebra which concerns itself with noncommutative rings. In the space of 200 pages, Herstein covers the Jacobson radical, semisimple rings, commutativity theorems, simple algebras, representations of finite groups, polynomial identities, Goldie's theorem, and the Golod–Shafarevitch theorem. Almost every practicing ring theorist has studied portions of this classic monograph.
These lecture notes were prepared by the authors for use in graduate courses and seminars, based on the work of many earlier mathematicians. In addition to very elementary results, presented for the convenience of the reader, Chapter I contains the Morita theorems and the definition of the projective class group of a commutative ring. Chapter II addresses the Brauer group of a commutative ring, and automorphisms of separable algebras. Chapter III surveys the principal theorems of the Galois theory for commutative rings. In Chapter IV the authors present a direct derivation of the first six terms of the seven-term exact sequence for Galois cohomology. In the fifth and final chapter the authors illustrate the preceding material with applications to the structure of central simple algebras and the Brauer group of a Dedekind domain, and they pose problems for further investigation. Exercises are included at the end of each chapter.