Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Continued Fractions
  • Language: en
  • Pages: 114

Continued Fractions

Elementary-level text by noted Soviet mathematician offers superb introduction to positive-integral elements of theory of continued fractions. Clear, straightforward presentation of the properties of the apparatus, the representation of numbers by continued fractions, and the measure theory of continued fractions. 1964 edition. Prefaces.

Analytic Theory of Continued Fractions
  • Language: en
  • Pages: 449

Analytic Theory of Continued Fractions

One of the most authoritative and comprehensive books on the subject of continued fractions, this monograph has been widely used by generations of mathematicians and their students. Dr. Hubert Stanley Wall presents a unified theory correlating certain parts and applications of the subject within a larger analytic structure. Prerequisites include a first course in function theory and knowledge of the elementary properties of linear transformations in the complex plane. Some background in number theory, real analysis, and complex analysis may also prove helpful. The two-part treatment begins with an exploration of convergence theory, addressing continued fractions as products of linear fractional transformations, convergence theorems, and the theory of positive definite continued fractions, as well as other topics. The second part, focusing on function theory, covers the theory of equations, matrix theory of continued fractions, bounded analytic functions, and many additional subjects.

Continued Fractions with Applications
  • Language: en
  • Pages: 634

Continued Fractions with Applications

This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.

Continued Fractions
  • Language: en
  • Pages: 261

Continued Fractions

This book is the first authoritative and up-to-date survey of the history of Iraq from earliest times to the present in any language. It presents a concise narrative of the rich and varied history of this land, drawing on political, social, economic, artistic, technological, and intellectual material. It also includes excerpts from works of ancient, medieval, and modern literature written in Iraq, some of which are translated for the first time into English. The final chapters provide an introduction to the history of archaeology in Iraq, set in the wider context of the development of archaeology into a scientific discipline. A special section highlights selected objects from the Iraq Museum...

Continued Fractions
  • Language: en
  • Pages: 200

Continued Fractions

This book presents the arithmetic and metrical theory of regular continued fractions and is intended to be a modern version of A. Ya. Khintchine's classic of the same title. Besides new and simpler proofs for many of the standard topics, numerous numerical examples and applications are included (the continued fraction of e, Ostrowski representations and t-expansions, period lengths of quadratic surds, the general Pell's equation, homogeneous and inhomogeneous diophantine approximation, Hall's theorem, the Lagrange and Markov spectra, asymmetric approximation, etc). Suitable for upper level undergraduate and beginning graduate students, the presentation is self-contained and the metrical results are developed as strong laws of large numbers.

History of Continued Fractions and Padé Approximants
  • Language: en
  • Pages: 556

History of Continued Fractions and Padé Approximants

The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ...

Geometry of Continued Fractions
  • Language: en
  • Pages: 409

Geometry of Continued Fractions

Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.

CONTINUED FRACTIONS
  • Language: en
  • Pages: 321

CONTINUED FRACTIONS

Continued Fractions consists of two volumes — Volume 1: Convergence Theory; and Volume 2: Representation of Functions (tentative title), which is expected in 2011. Volume 1 is dedicated to the convergence and computation of continued fractions, while Volume 2 will treat representations of meromorphic functions by continued fractions. Taken together, the two volumes will present the basic continued fractions theory without requiring too much previous knowledge; some basic knowledge of complex functions will suffice. Both new and advanced graduate students of continued fractions shall get a comprehensive understanding of how these infinite structures work in a number of applications, and why they work so well. A varied buffet of possible applications to whet the appetite is presented first, before the more basic but modernized theory is given. This new edition is the result of an increasing interest in computing special functions by means of continued fractions. The methods described in detail are, in many cases, very simple, yet reliable and efficient.

Multidimensional Continued Fractions
  • Language: en
  • Pages: 250

Multidimensional Continued Fractions

Mathematician Fritz Schweiger, whose academic affiliation is not provided, provides an introduction to a field of research that has seen remarkable progress in recent decades, concentrating on multidimensional continued fractions which can be described by fractional linear maps or equivalently by a set of (n + 1) x (n + 1) matrices. Addressing the question of periodicity, he refines the problem of convergence to the question of whether these algorithms give "good" simultaneous Diophantine approximations. He notes that these algorithms are not likely to provide such "good" approximations which satisfy the n-dimensional Dirichlet property. Also studied are the ergodic properties of these maps. Annotation copyrighted by Book News Inc., Portland, OR

Metrical Theory of Continued Fractions
  • Language: en
  • Pages: 408

Metrical Theory of Continued Fractions

The book is essentially based on recent work of the authors. In order to unify and generalize the results obtained so far, new concepts have been introduced, e.g., an infinite order chain representation of the continued fraction expansion of irrationals, the conditional measures associated with, and the extended random variables corresponding to that representation. Also, such procedures as singularization and insertion allow to obtain most of the continued fraction expansions related to the regular continued fraction expansion. The authors present and prove with full details for the first time in book form, the most recent developments in solving the celebrated 1812 Gauss' problem which originated the metrical theory of continued fractions. At the same time, they study exhaustively the Perron-Frobenius operator, which is of basic importance in this theory, on various Banach spaces including that of functions of bounded variation on the unit interval. The book is of interest to research workers and advanced Ph.D. students in probability theory, stochastic processes and number theory.